
UNCLASSIFIED

._._1 CO ..

Effective Utilization of Commercial
Wireless Networking Technology in
Planetary Environments:
Year 2 Annual Report

Phillip De Leon, Stephen Horan, Deva Borah, and Ray Lyman
New Mexico State University
Klipsch School of Electrical _ Computer Engineering
Box 30001, Dept. 3-0
Las Cruces, New Mexico 88003-8001

Annual Report Prepared for the

National Aeronautics and Space Adminstration, Glenn Research Center

under Grant #NAG3-2864

March 2005

UNCLASSIFIED

REPORT DOCUMENTATION PAGE] FormApproved
! OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hourper response, including the time for reviewing instructions, searching existing
data soumes, gathering and maintaining _ data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for r.ed.ucing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis H=ghway,Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law. no person shall be subject to any penalty for failingto comply with a collection of information if it does not display a currently
valid OMB contz_olnumber.

PLEASE DO NOT RETURN Y(_R FORM T9 THE ABOVE AppRESS.

1. REPORT DATE (DD-MM-Y_ J2. REPORT TYPE

01-03-2005 / Technical Report
4. TITLE AND SUBTITLE

Effective Utilization of Commercial Wireless Networking Technology in

Planetary Environments: Year 2 Annual Report

6. AUTHOR(S)

DeLeon, Phillip, Horan, Stephen, Borah, Deva, and Lyman, Ray

3. DATES COVERED (From - To)

01-05-2004 -- 01-05-2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

NAG3-2864

5C. PROGRAM ELEMENTNUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5E WORK UNff NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Box 30001/Dept. 3-0

Las Cruces, NM 88003-8001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Glenn Research Center

Space Systems and Grants Branch, MS 500-319

21000 Brookpark Road

Cleveland, OH 44135-3191

Technical Officer: Michael Caulev

8. PERFORMING ORGANIZATION
REPORT NUMBER

NMSU-ECE-05-001

10. SPONSORING/MONITOR'S ACRONYM(S)

NASA/GRC

11. SPONSORING/MONITORING
REPORT NUMBER

12. DISTRIBUTION/AVAILABIUTY STATEMENT

Unclassified - Unlimited; Distribution: Standard
Availability: NASA CASI (301) 621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The purpose of this research is to investigate the use of conm_rdal, off-the-shelf wireless networking technology in planetary exploration applicaticyus involving

rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using

actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency enviromm'nt, and 3) propose
modifications to the standards for raore efficient utilization. In this annual repot, we present our results for the second year of research. During this year, the effort

has focussed on the second objective of analyzing the performance of the IEEE 802.1 la and IEEE 802.1 lb wireless networking standards in the sinmlated radio
frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars

using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, nmxinmm link distances, effects of surface
clutter, and mulfipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the

Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the
performance (data rates, packet en, or rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. Tiffs information enables a critical examination of how these

wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

115.SUBJECTTERMS

Mars communication networks, wireless proximity networks, RF propagation modeling

i

16. SECURITY CLASSIFICATION OF:

a. REPORT !b. ABSTRACT c. THIS PAGE

U U U

17. LIMITATION OF

ABSTRACT

UU

18, NUMBER

OF
PAGES

169

19b. NAME OF RESPONSIBLE PERSON

Phillip DeLeon

19b. TELEPHONE NUMBER (Include area code)

(505) 646-3771

Standard Form 298 (Rev. 8-98)
byANSIStd.Z39-18

Abstract

The purpose of this research is to investigate the use of commercial, off-the-shelf wireless net-

working technology in planetary exploration applications involving rovers and sensor webs.

The three objectives of this research project are to: 1) simulate the radio frequency envi-

ronment of proposed landing sites on Mars using actual topographic data, 2) analyze the

performance of current wireless networking standards in the simulated radio frequency en-

vironment, __ad 3) propose modifications to the standards for more efficient utilization. In

this annual report, we present our results for the second year of research. During this year,

the effort has focussed on the second objective of analyzing the performance of the IEEE

802.11a and IEEE 802.11b wireless networking standards in the simulated radio frequency

environment of Mars. The approach builds upon our previous results which deterministically

modelled the RF environment at selected sites on Mars using high-resolution topographical

data. These results provide critical information regarding antenna coverage patterns, max-

imum link distances, effects of surface clutter, and multipath effects. Using these previous

results, the physical layer of these wireless networking standards has now been simulated

and analyzed in the Martian environment. We are looking to extending these results to

the and medium access layer next. Our results give us critical information regarding the

performance (data rates, packet error rates, link distances, etc.) of IEEE 802.11a/b wireless

networks. This information enables a critical examination of how these wireless networks

may be utilized in future Mars missions and how they may be possibly modified for more

optimal usage.

ii

Contents

Report Documentation Page

Abstract ii

Lists of Figures and Tables vi

1 Summary 1

2 Introduction 3

3 Methods, Assumptions, and Procedures 6
3.1 Introduction 6

3.2 Validation of Local Power Delay Profile Simulations 6

3.2.1 Local Site Locations for Reflection Measurements 6

3.2.2 Measurement Procedure 6

3.2.3 Simulation of PDPs 10

3.3 Measurement of Power Delay Profiles with the YellowJacket 802.11b PLUS . 10

3.3.1 Background Information 10
3.3.2 Relative Correlation Window 13

3.3.3 Multipath Values in Log File 13

3.3.4 RlVIS Delay Spread 14

3.3.5 Final Notes 14

3.4 Simulation of IEEE 802.11a/b Physical Layer using MATLAB 14

3.4.1 Summary 14
3.4.2 Introduction 15

3.4.3 IEEE 802.11 WLAN 16

3.4.4 MATLAB Simulation Development 18

3.5

3.6

3.4.5 RF Environment on the Martian Surface 20

Simulation of IEEE 802.11a/b MAC Layer using OPNET 21

Outdoor IEEE 802.11b Measurements 24

3.6.1 The Iperf Network Measurement Bandwidth Tool 29

3.6.2 YellowJacket and IEEE 802.11b 30

4 Results and Discussion

4.1

4.2

4.3

4.4

4.5

4.6

33

Introduction 33

Validation of Power Delay Profile Simulations 33

Power Delay Profile Measurement Data 33

Outdoor IEEE802.11b Results-Stadium Parking Lot 35

Outdoor IEEES02.11b Results-Dripping Springs 35

Simulated WLAN Performance at Different Sites 35

4.6.1 Performance versus distance between the transmitter and the receiver 39

nl

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

Effect of transmit power on PER 40

BER Performance versus SNR 43

Effect of using RAKE for 802.11b 43

Performance versus antenna heights 49

Discussion 49

5 Conclusions

6 Recommendations

References

53

55

56

A Research Personnel 59

B Publications Resulting from Research 61

C Steps for Generating Simulations 62

C.1 RF Coverage Simulations using HerTZ Mapper 62

C.2 Power Delay Profile Simulations using ICS Telecom 67

D Visualization of Data Acquired with the Yellow Jacket 69

D.1 Log File Transfer 69
D.2 MATLAB YellowJacket Toolbox User's Guide 71

76

E.1 Introduction- Free Field and Simple Reflector Tests 76

E.2 Equipment 76
E.3 Procedure 77

E.4 Introduction- Multipath Tests 78

E.5 Equipment 78

E.6 Procedure 80

E IEEE 802.11b Field Measurement Test Procedure

F Code Listings

List of Symbols, Abbreviations, and Acronyms

83

168

iv

List of Figures

3.10

3.11

3.12

4.1

3.1 Reflectors at (a) Tortugas Mountain (sloping face) and (b) Dripping Springs

(rock formation) 7

3.2 Digital elevation maps for (a) Tortugas Mountain and (b) Dripping Springs.

Approximate locations of TX, RX, and reflection points are denoted on DEMs. 8

3.3 Arrangement of transmitter (TX), receiver (RX), and reflector at (a) Tortugas

Mountain and (b) Dripping Springs 9

3.4 Mobile antenna placement 11

3.5 Receive antenna at Dripping Springs 12

3.6 Yellow Jacket display showing the correlation display window plus a Received

Signal Strength Indicator (RSSI) window 13
3.7 PPDU Format for IEEE 802.11a and b 17

3.8 Measurements on the NMSU football stadium parking lot 25

3.9 (a) Reflector made of steel bookshelves and (b) setup for measurements in the

simple reflection environment 26

Arrangement of IEEE 802.11 access point (TX) and node (RX) at La Cueva

(rock formations) in Dripping Springs 27

Intel Proset WLAN configuration window 29

Example output from Iperf. 30

Power delay profile simulation results from (a) Tortugas Mountain and (b)

Dripping Springs 34

4.2 Power delay profiles of the NMSU football stadium parking lot (free field) as

measured using the Yellow Jacket 36

4.3 Power delay profiles of the NMSU football stadium parking lot with and with-

out a reflector present 37

4.4 Power delay profiles of the La Cueva rock formations at Dripping Springs. 38

4.5 Outdoor IEEE802.11b network bandwidth and percent UDP received packets

for (a) free field and (b) simple reflection 38

4.6 Outdoor IEEE802.11b network bandwidth and percent UDP received packets

for (a) free field and (b) multipath environment
BER Performance for 802.11a and b at Gusevl Sitel4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

BER Performance

for 802.11a

for 802.11a

for 802.11a

for 802.11a

for 802.11a

for 802.11b

for 802.11b

for 802.11b

for 802.1 lb

for 802.1 lb

39

43

at Gusevl Sitel 44

at Gusevl Site2 44

at Gusevl Site3 45

at Hematite4 Sitel 45

at Hematite5 Sitel 46

at Gusevl Sitel without a RAKE structure. 46

at Gusevl Site2 without a RAKE structure. 47

at Gusevl Site3 without a RAKE structure. 47

at Hematite4 Sitel without a RAKE structure. 48

at Hematite5 Sitel without a RAKE structure. 48

V

4.18

4.19

4.20

C.1

C.2

C.3

C.4

C.5

C.6

D.7

D.8

D.9

D.10

D.11

D.12

D.13

E.14

E.15

E.16

BER Performance for 802.11b at Gusevl Sitel with a RAKE receiver 49

... 0

BER Performance for 802.11b at Gusevl Sitel using a RAKE receiver. The

transmit power is 100 #W, and the distance (d) between the transmitter and
the receiver is 100 m 51

HerTZ Mapper file server window 63

HerTZ Mapper station parameters 64

HerTZ Mapper opening window 64

HerTZ Mapper model selection window 65

HerTZ Mapper ITM parameter window 65

HerTZ Mapper opening window 66

Snapshot of ActiveSync 69

Snapshot of Chameleon 70

Snapshot of Excel 71

Snapshot of Windows desktop 72
MATLAB's command window 73

Yellow Jacket toolbox program running 74

Yellow Jacket toolbox program running 75

Wireless node positions at stadium parking lot 78

Outdoor geometry 79

Sample output from ping test 81

vi

List of Tables

2.1 Important 802.11 protocol parameters 5

3.1 GPS coordinates for TX and RX positions at local sites 8

3.2 Sites for WLAN Performance Study. 21

4.1 PDP validation data 33

4.2 Packet Error Rate Performance at Gusevl Sitel. A '-' indicates zero packet

errors, in 20,000 packets 41

4.3 Packet Error Rate performance at Gusevl Site2 41

4.4 Packet Error Rate performance at Gusevl Site3. A '-' indicates zero packet

errors, in 20,000 packets 41

4.5 Packet Error Rate Performance at Hematite4 Sitel 42

4.6 Packet Error Rate Performance at Hematite5 Sitel 42

4.7 Effect of Transmit Power on PER for Gusevl Sitel at a distance of 100 m

from the transmitter 42

4.8 Packet Error Rate Performance at three sites in Gusevl for IEEE 802.11b. 50

vii

1 SUMMARY

1 Summary

Effective utilization of commercial wireless networking technology such as that based on

the IEEE 802.11a and IEEE 802. l lb standards, could bring the vision of proximity wireless

networks used in future exploration of Mars to reality. However, in its current form, this

technology may fall short of expectations due to its power requirements, limited transmission

range, significant attenuation in hilly terrain, and possible poor bit error rate performance

due to long muitipath delays and harsh environments. The three objectives of tiffs three-year

research program are to 1) simulate the Radio Frequency (RF) environment of a planetary

surface using high-resolution, Digital Elevation Maps of Mars, 2) analyze the performance

of current wireless networking standards in the simulated RF environment, and 3) propose

modifications to the wireless networking standards for better utilization in the planetary
environment.

In year two, we have successfully accomplished the second research objective through the

completion of the following tasks:

Using the Year 1 results regarding antenna coverage patterns, maximum link distances,

effects of surface clutter, and multipath effects, we have simulated the physical layers

of IEEE 802.11a and IEEE 802.11b wireless networking standards in the Martian en-

vironment. The simulations were conducted in MATLAB using the Comm Access

Technologies mWLAN toolbox. These results will be used as the basis to begin the

study of the behavior of the medium access layer for these protocols for the planetary
environment.

We have measured key parameters (RF signal strength, delay spread, data rates, and

packet error rates) in an outdoor IEEE 802.1 lb wireless network. These measurements

were conducted at sites near Tortugas Mountain and Dripping Springs due their sim-

ilarity to the Mars surface (free of man-made objects, little vegetation, mostly flat

with some terrain variation and rocks, etc.). These measurements were compared with

expected performance based upon the DEMs for the sites. We judge the agreement

to be very good, especially considering the wide variation in measurements that can

occur by moving the transmitter or receiver antenna by a small distance.

In this annual report, we present detailed results for the second objective of analyzing

the performance of current wireless networking standards in the simulated RF environment.

Our results give us critical information regarding the performance (data rates, packet error

rates, link distances, etc.) of IEEE 802.11a/b wireless networks. This information enables

careful examination of how these wireless networks may be utilized in future Mars missions

and how they may be possibly modified for optimal usage. Our work suggests that:

• The results of the physical layer simulations for the Martian surface show that success-

ful communications are possible within a few hundred meters of the transmit antenna

when the transmit power is more than a few milliwatts and the antenna heights are

fixed at more than 1 meter above the ground. The packet error rate performance of

1 SUMMARY

802.11b without a RAKE receiver seems to be more adversely affected by the multi-

path conditions than 802.11a. Further, the lowest data rate mode of 802.11a pro_ides

the best bit error performance.

Using higher power in the communications system does not always help the perfor-

mance of the system. This result is known for terrestrial environments where vegeta-

tion and atmospheric phenomena are important. It is also true in sparse environments

with negligible atmospheric attenuation as well.

Transmission power and antenna height can be traded to a certain extent. The desired

link Quality of Service and data rate may be more of a driver in link design and

performance than transmission power and antenna height.

• Use of a RAKE-type of receiver can significantly improve performance with 802.11b

protocols.

In addition, we include results from Year 1 regarding the validation of the power delay

profiles. These results were not published in the 2004 annual report.

2 INTRODUCTION

2 Introduction

NASA's long-term goals for the exploration of Mars include the use of rovers and sensors

which intercommunicate through proximity wireless networks. Elements of the network have

a short transmission range, low power requirements, low cost, and a relatively short-life span

[1]. The performance of any such wireless network depends fundamentally on the Radio

Frequency (RF) environment. In order to evaluate and optimize the performance of such

a wireless network, a basic understanding or model of the channel is important. With

such a model, better choices for the modulation and coding schemes, equalizer design, and

positioning of network access point antennas can be made [2]. These choices can also affect

the overall design and operations of a rover or a sensor web for a planetary environment.

In the first year of the research, we simulated the RF environment of selected sites on Mars

using commercial RF planing and propagation software (with appropriate modifications for

the Mars environment) and high-resolution Digital Elevation Maps (DEMs) from the Mars

Global Surveyor (MGS) mission. The results of the simulation provided critical information

regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and

multipath effects. Using these results, we now have simulated and analyzed the physical

layers of the IEEE 802.11a and IEEE 802.11b wireless networking standards in the Martian

environment. Our results give us new information regarding the performance (data rates,

packet error rates, link distances, etc.) of the wireless networks. This information enables

careful examination of how these wireless networks may be utilized for proximity networks in

future Mars missions and how they may be possibly modified for optimal usage. In addition,

these results could assist mission planners in network design should such wireless networking

technology be adopted. These studies form the basis for our examination of the medium

access layers for these protocols that we have now begun and how the protocols may be

expected to act in the outdoor planetary environment.

The major accomplishments of the first year's work are detailed in [3] and they include:

Identified a RF planning and propagation software packages (ATDI's HerTZ Mapper

and ICS Telecom) that are used in the cellular telephone industry for network planning

and optimization. The software, with modifications developed at NMSU, allows us to

import DEMs of Mars and tune key parameters of the propagation model for accurate

simulations of RF coverage patterns and multipath.

Obtained high-resolution (10.4m/pixel) DEMs for the Gusev Crater and Meridiani

Planum regions and successfully reformatted this data for import into the software.

Within these regions, sites were chosen for their range and topographic features which

were expected to yield different RF propagation effects in simulation.

Computed RF coverage patterns and power delay profiles (multipath) for various com-
munication scenarios at the selected sites. These scenarios include various transmitter

and receiver locations, transmission power, surface clutter, and atmospheric phenom-

ena. The basic reference configuration was a 2.4GHz carrier frequency, omnidirectional

3

2 INTRODUCTION

antennas at a lm height above local ground, and 1W radiated power. The clutter layer

was synthesized based on the statistical distribution of rock sizes and spacing found in
earlier Mars missions.

• Validated the simulation method by modelling a local site and performing actual RF
field measurements.

Utilized the skmu!ation results to mn_swer questions that mission planners might wish

to ask such as percentage RF coverage in a region or percent RF coverage as a function

of distance from a network access point.

The major recommendations from the first year's work are

Investigate how the coverage results and power delay profiles may affect communica-

tions protocol selection and/or modifications. These investigations are expected to give

further insights into the design of proximity network configurations and potential ways

to modify the protocols for better performance.

• Utilizing the RF models developed in this research, evaluate and improve IEEE 802.11a

and 802.11b protocols for use in proximity wireless networks.

Investigate how NASA mission planners might partner with New Mexico State Univer-

sity to make the RF modelling techniques developed in this research more widely known

and utilized in the planetary exploration community. The methods developed in this

research could be used to model RF propagation at other sites of interest on the moon,

Mars, and even in structures such as the International Space Station.

In this research regarding wireless network simulation on the Martian surface, we assume

a proximity network model composed of multiple surface rovers and sensors that communi-

cate via IEEE 802.11a or IEEE 802.1b to a network access point placed on the lander. At the

lander, data is filtered, aggregated, and packaged for transmission back to earth via an or-

biting relay station [4]. Other assumptions in the network model are 1W transmitted power

between the network access point and surface nodes (rovers or sensors), omnidirectional

antennas placed at a 1-2m heights, and 2.4GHz or 5GHz, as appropriate for the standard,
carrier frequency.

We assume that the standard commercial 802.11 wireless networks are being used. Rel-

evant parameters for the 802.11a and b standards are given in [5] and are summarized in

Table 2.1. The 802.11 protocols contain functions related to connection management, link

reliability management, and power management. The protocol developers are also looking

into functions related to link security as well. The protocol supports two basic modes for

mobile terminal operation: infrastructure mode and ad hoc mode. In the infrastructure

mode used in this research, the mobile terminals access a wired network via one or more

access points. In the ad hoc mode, the mobile terminals can communicate directly with each

other without the need for the access point.

4

2 INTRODUCTION

Table 2.1: Important 802.11 protocol parameters.

Parameter 802.11b 802.11a

Operating Frequency
Maximum Data Rate

Slot Time

Minimum_ Contention Window

Maximum Contention Window

2.4 GHz

11 Mbps

20 Its
31

1023

5 GHz

54 Mbps

9 Its
15

1023

Modulation Format Complimentary Code

Keying (CCK)

Direct Sequence Binary

Phase Shift Keying

(DS-BPSK)

Quadrature Phase

Shift Keying (QPSK)

Packet Binary Convolutional

Code (PBCC)

Orthogonal Frequency

Division Multiplexing

(OFDM)

The wireless protocol needs to be configured so that the medium access layer works to

avoid collisions and not just recover from channel collisions. The basic method is to use a

modified version of the IEEE truncated binary exponential backoff algorithm. If the channel

is busy, the sender backs off an integer multiple of the slot time. The backoff algorithm

has variations from the strict application to allow a more fair access of the channel by

those stations currently experiencing a backoff wait. In order to avoid the hidden terminal

problem, the 802.11 networks can use a request-to-send/clear-to-send mechanism for channel
access control and collision avoidance. Because the wireless channel can have relatively poor

performance, e.g. a channel BER of 10 -t, there is a provision in the 802.11 protocols to

allow for fragmentation of the packets. A shorter packet will have a higher probability of

successful transmission so packet fragmentation can result in higher throughput in poor

channels. Wireless protocols allow for power management through placing devices into sleep

modes. When a device is in sleep mode, it cannot send or receive data. The device can have

its sleep/awake duty cycle adjusted for specified power management goals. When a node

needs to send data to a sleeping mode, the data sender must buffer the data until it detects

the sleeping node has reactivated and is ready to receive.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3 Methods, Assumptions, and Procedures

3.1 Introduction

In this section, we first describe the methods, assumptions, and procedures used in validating

the power delay profile results using local sites (this work was not included in the 2004 annual

report but it did continue into Year 2 of the effort). Next, we describe the main work of

Year 2 of the research project, namely simulating and analyzing the physical and medimn

access layers of IEEE 802.11a/b.

3.2 Validation of Local Power Delay Profile Simulations

In order to gain confidence in the simulation of a Power Delay Profile (PDP) for any environ-

ment, we attempted to measure a detailed channel impulse response at 2.4 GHz at a location

where the map data was available and where detailed measurements could be made. How-

ever, due to the high-speed instrumentation required to capture a complete, high-resolution

response, we instead decided to measure the RF power for a simple reflection off a large-scale

topographical feature referenced to a direct path power level. This reflection could then be

checked against simulation for proper time delay and power level as a validation. In order

that the channel response would not be too complex, we selected local sites which were very

fiat, had minimal vegetation, and which had a single large sloping or vertical rock face.

3.2.1 Local Site Locations for Reflection Measurements

We chose two local sites for reflection measurements: 1) on the east side of Tortugas Moun-

tain (approximately 10 minutes from the NMSU campus) and 2) Dripping Springs State Park

(approximately 30 minutes from the NMSU campus). The "reflector" at the Tortugas Moun-

tain site is a portion of the 200 m sloping, east face of the mountain (see Fig. 3.1 (a))and
at the Dripping Springs site is a near vertical rock formation north of the visitor center

(see Fig. 3.1 (b)). DEMs for these local sites are shown in Fig. 3.2. For these two sites,

the coordinates for the transmitter (TX) and receiver (RX) positions are given in Table 3.1

and the basic arrangement of transmitter, receiver, and reflector is shown in Fig. 3.3. For

the Tortugas Mountain site, the distance travelled along the reflection path is 424 m which

translates to a travel time of 1.4/as at the speed of light.

3.2.2 Measurement Procedure

In order to measure the reflected RF power off of Tortugas Mountain, we used directional

antennas (Cushcraft 24012P) to transmit and receive the 2.4-GHz signal. Directional anten-

nas were required in order to ensure that the received signal was strictly from the reflection

off of Tortugas Mountain and not directly from a side lobe of the transmitting antenna. The

actual antenna patterns were measured in the NMSU anechoic chamber and this pattern
was later used in the simulation.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

(b)

Figure 3.1: Reflectors at (a) Tortugas Mountain (sloping face) and (b) Dripping Springs

(rock formation).

3 METHODS, ASSUMPTIONS, AND PROCEDURES

(_) (b)

Figure 3.2: Digital elevation maps for (a) Tortugas Mountain and (b) Dripping Springs.

Approximate locations of TX, RX, and reflection points are denoted on DEMs.

Table 3.1: GPS coordinates for TX and RX positions at local sites.

Site Latitude Longitude Elevation

Tortugas Mountain - TX 32 ° 17' 46.1" -106 ° 41' 31.5" 1300 m

To_ugas Mountain - RX 32 ° 17' 48.1" -106 ° 41' 26.9" 1309 m

Dripping Springs - TX 32 ° 19' 59.8" -106 ° 35' 37.6" 1680 m

Dripping Springs - RX 32 ° 19' 59.2' -106 ° 35' 35.4" 1682 m

8

3 METHODS, ASSUMPTIONS, AND PROCEDURES

Reflector
150 m TX

I rfl

(a)

RX

Reflector
160 m TX

140m _

RX

(b)

Figure 3.3: Arrangement of transmitter (TX), receiver (RX), and reflector at (a) Tortugas

Mountain and (b) Dripping Springs.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

For the measurements at Tortugas Mountain, the transmitter antenna was mounted on

top of the NMSU telemetry van and the receiver antenna was mounted on a university truck

as shown in Figure 3.4 in order to have them each at roughly the same elevations. For the

measurements at Dripping Springs, both transmit and receive antenna were mounted on

poles approximately 3 m off the ground. The receive antenna is shown in as shown in Figure

3.5. A Microdyne (TSS-2000) signal generator was used as the 2.4-GHz, 100-roW source

and an Agilent spectrum analyzer (E4403B) was used to measure power levels at the receive
side.

First, the noise floor at the site was found with the spectrum analyzer. Then the trans-

mitter was turned on generate a continuous wave signal with a transmission power of 20 dBm

(100 mW) at 2.4 GHz. Second, the direct path measurements were made by pointing the

transmit and receive antenna towards each other. Third, the transmit and receive antennas

were pointed towards a small target on Tortugas Mountain and RF power measurements

were made. In order to determine the level of sidelobe power propagating from transmit

to receive antenna, both antennas were pointed up into the sky and sidelobe power was

measured.

3.2.3 Simulation of PDPs

The DEMs for the Tortugas Mountain and Dripping Springs sites were converted to ATDI's

proprietary format for use with ICS Telecom. The procedure for generating the PDPs using

ICS Telecom was given in Appendix C of the 2004 Annual Report.

3.3 Measurement of Power Delay Profiles with the Yellow Jacket

802.11b PLUS

In June 2004, we acquired a YellowJacket 802.11b PLUS measurement instrument from

Berkeley Varitronics Systems (BVS). In addition to measuring many IEEE 802.lib-specific

parameters, it is also able to measure a power delay profile from an access point to the

location of the Yellow Jacket. The PDP measurement can be geocoded using the on-board

GPS unit and logged to a file. Such measurements provide us a capability to develop real-

world, space-time RF channel models at 2.4GHz. In this section, we describe how that

measurement is made.

3.3.1 Background Information

Consider a channel with impulse response h(n) with an input (transmitted) random process

u(n) and an output (received) random process y(n). Compute the cross-correlation of the

received process with the transmitted (E[*] is the expectation operator)

ruy(n)-- E[u(k)y*(k-n)]

10

3 METHODS, ASSUMPTIONS, AND PROCEDURES

(b)

Figure 3.4: Mobile antenna placement. (a) Transmit antenna on the top of the NMSU

telemetry van and (b) Receive antenna on university truck at the Tortugas Mountain (A-

Mountain) site.

11

3 METHODS, ASSUMPTIONS, AND PROCEDURES

Figure 3.5: Receive antenna at Dripping Springs.

= E

= E

oo

u(k) _ h(1)u*(k - n - l)
l=--oo

__, h(1)u(k)u*(k - n - l)
l=--oo

= _ h(l)E[u(k)u*(k-n-l)]. (3.1)
l_--OO

All 802.11b packet transmissions start with several repetitions of the unmodulated Barker

code. The 802.11b Barker code is ll-bits long and it has excellent correlation properties, i.e.

r_(n) = (f(n). (3.2)

The YellowJacket correlates the received 802.11b packet, y(n) against the Barker code at

the start of the received packet. Thus substituting (3.2) into (3.3) shows that the cross-

correlations are in fact the impulse response values

oo

r,_(n) = _ h(l)_(n- l)
l=--oo

---- h(n). (3.3)

The PDP is readily computed from (3.3) by

P'(n) = maxlh(n)l 2. (3.4)

Finally, Yellow Jacket normalizes (3.4) so that

P(n) = maxP'(n)

= 1.0. (3.5)

12

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.3.2 Relative Correlation Window

Equation (3.4) is computed in the YeUowJacket at a time spacing of 1/4 chip (91 ns), for a

span of about 10 chips, i.e. and displayed in the relative correlation window. Yellow Jacket

centers the PDP so that the peak (assumed to be the direct path) is at 0 (hence the relative

correlation). Thus for convenience, the relative correlations start at 2 chips and end around

+8 chips. This is illustrated in Figure 3.6 for the YeUowJacket unit where the display is set

to show si_o__alcorrelation and received signal _ren_h (RSS!).

Figure 3.6: Yellow Jacket display showing the correlation display window plus a Received

Signal Strength Indicator (RSSI) window.

3.3.3 Multipath Values in Log File

The first N = 22 relative correlations which ate displayed are logged to a file. Presumably

not all 40 values axe stored in order to reduce memory. Thus the time extent of the correlation
_nction is

r -- 22 × 91ns

= 2#s. (3.6)

13

3 METHODS, ASSUMPTIONS, ANDPROCEDURES

3.3.4 RMS Delay Spread

The rms delay spread, a is defined as

cr = CE[P2(n)] - (E[P(n)]) 2. (3.7)

where E is the expectation operator and P(n) is the received power at time n. Yellow Jacket

computes and displays the ..-ms delay spread us_mg the 22 PDP ;-a!ues as follows. Since we

have only a finite amount of data the expectations must be estimated. The second moment,

E [p2 (n)] is estimated with

-- N-1 (3.8)
_,=0 P (n) n

where N -- 22 is the number of PDP samples Yellow Jacket has stored. The first moment or

mean delay, E [P (n)] is estimated with

N-1

,=0 P (n) n (3.9)[(_l__P,n,, = g-1 •
_,=0 P (n) n

Using these estimates, the rms delay spread is calculated as

a = TIE,[P2(n)]- (/_[P(n)l) 2. (3.10)

where T = 1/22 MHz (1/2 x 1/4 chip period?).

3.3.5 Final Notes

The Yellow Jacket provides a convenient method of measuring real-world PDPs provided the

delay spread is not too large so that the values alias. Note that if the propagation delay

between the strongest path and multipath reflections is larger that 9 chips, the multipath

can "alias'to the start (-2) of the multipath display.

3.4 Simulation of IEEE 802.11a/b Physical Layer using MATLAB

The work in this section is based upon the paper "Performance Evaluation of the IEEE

802.11a and b WLAN Physical Layer on the Martian Surface" by Deva K. Borah, Anirudh

Daga, Gaylon Lovelace and Phillip DeLeon. This paper was presented at 2005 IEEE

Aerospace Conference.

3.4.1 Summary

The performance of IEEE 802.1 la and b WLAN standards on the Martian surface is studied

in this task area. The Gusev Crater region and the Meridiani Planum (Hematite) region

14

3 METHODS, ASSUMPTIONS, AND PROCEDURES

are chosen as example sites based on the mission science and mission success criteria. The

radio frequency multipath environment is obtained using digital elevation maps from the

Mars Global Surveyor mission, taking into account the atmosphere and other factors on

the Martian surface. It is observed that IEEE 802.11a performs well in terms of packet

error rates at distances up to a few hundred meters from the transmit antenna when the

transmit power is 1 W and the antennas are located 1.5 m above the ground. Although the

performance of IEEE 802.11b is found to be more adversely affected, its performance too

can be improved significantly using a RAKE receiver. It is observed that the lower data

rate modes of 802.11a show much better results in terms of bit error rates. However, both

802.11a and b appear to provide effective communications within a few hundred meters of
the transmitter in the selected sites considered.

3.4.2 Introduction

Future space missions on the Martian surface may involve multiple rovers collecting data at

different locations, and communicating wirelessly with common access points. Such com-

munications have to be reliable, robust and power efficient. Development and testing of

such communication technologies from scratch is an expensive proposition. A more cost

effective approach would be to adapt existing technology with appropriate modifications.

Towards this objective, this paper investigates the physical layer performance of two well

known Wireless Local Area Network (WLAN) standards IEEE 802.11a and IEEE802,11b

under the Martian environment, and identifies the issues that need to be addressed.

The IEEE 802.11b standard [6] provides data rate options of 1, 2, 5.5 and 11 Mbit/s in

the 2.4 GHz band. The modulation options include direct sequence spread spectrum using

differential Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK),

Complementary Code Keying (CCK), and Packet Binary Convolutional Code (PBCC). Al-

though primarily designed for indoor office environments, recent studies have shown good

performance of 802.11b in outdoor environments [7], [8]. However, the performance with low

height rover antennas on the Martian surface, and the performance comparison of 802.11b

with respect to 802.11a in the Martian environment are important issues that have not been

addressed before and need investigation.

The IEEE 802.11a standard [9] operates in the 5-GHz band and uses the Orthogonal

Frequency Division Multiplexing (OFDM) technology. It can support data rates of 6, 9,

12, 18, 24, 36, 48, and 54 Mbit/s. The standard employs convolutional encoder, and uses

cyclic prefix of 0.8 micro second duration. This enables it to handle the multipath problem

more successfully [10], [11]. However, longer delay spreads, which can happen on the Martian

environment with low height antennas and longer transmitter/receiver distances, can severely

affect its performance. Therefore, the effects of such delay spreads on the Martian surface

require investigation.

In previous work [12], the RF environment of the Martian surface has been extensively

studied. In particular, the RF coverage patterns produced from a 2.4 CHz transmitter with 1

W radiated power and 1 m antenna height within Gusev Crater and Meridiani Planum have

15

3 METHODS, ASSUMPTIONS, AND PROCEDURES

been investigated. These simulations use 11 m/pixel digital elevation maps from the Mars

Global Surveyor mission. The software used in this study takes into account the propagation

factors such as planetary radius, atmospheric density and composition, soil chemistry, etc.

The impact of surface clutter (rocks) on RF propagation has also been examined. It has

been observed in that study that while significant terrain variation can have a major impact

on the coverage, sufficient RF signal power for an IEEE 802.11b link is possible at these sites

over several kilometer distances even with low antenna heights.

This analysis uses the received power results from [12] and recent results regarding the

simulation of the multipath environment in the performance evaluation of the 802.11 a and b

standards. Here, we will study the performance of different data rates for different transmit

and receive antenna locations and several sites on Mars. It is observed in the results that

multipath environments can severely affect the performance of 802.1 lb. The use of receivers

that mitigate multipath effects, such as RAKE-type receivers, is found to provide significant

improvement. The performance of 802.11a is also found to be affected by the multipath

environment, especially in the absence of clear line-of-sight. In particular, the higher bit

rate modes of IEEE 802.1 la are found to be more affected by the multipath effects. Further,

when the delay spread exceeds the 0.8 #s cyclic prefix duration, the performance drops

rapidly.

This study section is organized as follows. In Section 3.4.3, we provide an overview of

the 802.11a and b physical layer (PHY) specifications. The packet structures described in

this section are faithfully simulated in our simulation results section. In Section 3.4.5, the

site selection criteria on the Martian surface, and the radio frequency multipath calculation

are described. In Section 3.4.4, the methodology for preparing MATLAB and the product

mLAN for the physical layer simulations is described. Section 4.6 presents the simulation

results in terms of packet error rates and bit error rates. A discussion on the interpretations

of the simulation results is presented in Section 4.6.6.

3.4.3 IEEE 802.11 WLAN

In this section, we present a brief overview of the physical layer specifications of IEEE 802.1 la
and b standards.

IEEE 802.11

The IEEE 802.11a physical layer is based on orthogonal frequency division multiplexing

and operates in the 5-GHz band providing data payload capabilities of 6, 9, 12, 18, 24, 36, 48

and 54 Mbit/s. The different transmission rates are obtained by varying the modulation type

and/or the channel coding rates. The system uses 52 subcarriers that are modulated using

BPSK, QPSK, 16- or 64- Quadrature Amplitude Modulation (QAM). The error correction

coding uses a convolutional encoder with a coding rate of 1/2, 2/3 or 3/4.

The Physical layer Protocol Data Unit (PPDU) format is shown in Fig. 3.7. The Physical

Layer Convergence Procedure (PLCP) preamble field consists of 10 repetitions of a short

training sequence, and two repetitions of a long training sequence preceded by a Guard

Interval (GI). A single BPSK encoded OFDM symbol follows. It contains a 4-bit RATE

16

3 METHODS, ASSUMPTIONS, AND PROCEDURES

PLCP Preamble SIGNAL DATA

! 2 symbols One OFDM symbol OFDM symbols

(a) IEEE 802.11 a

PLCP Preamble

144 bit or 72 bit

PLCP Header

48 bit

PSDU

(b) IEEE 802.1 lb

Figure 3.7: PPDU Format for IEEE 802.11a and b.

field, a 12 bit LENGTH field, one reserved bit, one parity bit and 6 'zero' tail bits encoded

with a rate 1/2 convolutional code. The DATA portion contains a 16 bit SERVICE field,

a Physical Sublayer service Data Unit (PSDU), 6 'zero' tail bits and pad bits, and may

constitute multiple OFDM symbols.
The data to be transmitted are scrambled to remove any spectral line from the data.

They are then convolutionally encoded with a rate-l/2 encoder with generator polynomials

go = 1338, gl = 1718, and puncturing is performed if necessary. All encoded data bits

are interleaved using two steps. First, consecutive coded bits are mapped to non-adjacent

subcarriers. The second step maps consecutive coded bits onto the less and more significant

bits of the constellation.

The OFDM symbols axe transmitted using a relatively long cyclic prefix of duration

TGI = TFFT/4, where TFF T is the duration of an OFDM symbol. The duration TFF T equals

3.2 its. Thus the symbol interval is 4.0 its. The PLCP preamble duration is 16 its, and the

SIGNAL symbol lasts 4.0 its.

IEEE 802.11b

The IEEE 802.11b Direct Sequence Spread Spectrum (DSSS) can provide data rates of 1,

2, 5.5 and 11 Mbit/s in the 2.4 GHz band. The basic data rate of 1 Mbit/s is provided using

Differential Binary Phase Shift Keying (DBPSK) while the 2 Mbit/s rate uses Differential

Quadrature Phase Shift Keying (DQPSK). The above two data rates employ 11 chip long

Barker sequences for spreading with a chip rate of 11 MHz.

Higher data rates of 5.5 Mbit/s and 11 Mbit/s are available in 802.11b through the use

of complementary code keying at the same chipping rate of 11 Mchips/s. Each CCK symbol

consists of 8 complex chips: j(01+¢2+_3+¢4), e/(_I+¢3+¢,), eJ(¢'.+¢2+¢4), _eJ(¢1+¢4), eJ(*_+_2+._3),

e j(0_+03), -_(_1+¢_), e j¢1 . In the case of 5.5 Mbit/s, 4 bits are transmitted per symbol while

in the case of 11 Mbit/s, the number of bits transmitted per symbol is 8. The first two bits

are used to compute a phase change for ¢1 with respect to phase ¢1 of the preceding symbol

or the phase of the preceding DQPSK symbol if there is a header to PSDU transition. In the

case of 5.5 Mbit/s, the remaining two bits are used to derive the phase ¢2, Ca and ¢4, while

17

3 METHODS, ASSUMPTIONS, AND PROCEDURES

the 11 Mbit/s mode uses the remaining 6 bits to compute ¢2, Ca and ¢4 based on QPSK.

An optional mode replacing CCK modulation with packet binary convolutional coding with

a 64-state encoder is _lso available.

The PPDU format for IEEE 802,11b is also shown in Fig. 3.7. Two different preamble

and headers are defined: long PLCP PPDU format and short PLCP PPDU format. The long

format contains a 144-bit preamble and a 48-bit header, while the short format contains a 72-

bit preamble and a 48-bit header. The preamble contains two fields: synchronization (Sync)

and Start Frame Delimiter (SFD). The Sync field is provided to enable the receiver per-

form necessary synchronization operations. The SFD indicates the start of PHY-dependent

parameters within the PLCP preamble. The header consists of signal, service, length and

Cyclic Redundancy Code (CRC) fields. The signal field indicates the data rate that is used

for the transmission and reception of the PSDU. The service field contains 8 bits, and they

carry some information about modulation, symbol clock etc. The length field indicates the

number of microseconds required to transmit the PSDU. Finally, a 16 bit CRC protects the

signal, service and the length fields. The long PLCP preamble and header are both trans-

mitted using 1 Mbit/s DBPSK modulation. In the case of a short PLCP, the preamble is

transmitted using 1 Mbit/s while the header is transmitted using 2 Mbit/s. The transmitted

data bits are scrambled at the transmitter and descrambled at the receiver.

3.4.4 MATLAB Simulation Development

We use the capabilities of MATLAB to model the physical layer in this investigation. MAT-

LAB does not have the required tools in its manufacturer's distribution to perform all of

the analysis. To augment MATLAB, we acquired the mLAN tools from CommAccess. This

section describes the effort required to male these tools usable in the analysis and simulation.

IEEE 802.11a

The IEEE 802.11a physical layer simulation software was developed around the mWLAN

Toolbox by CommAccess Technologies. This package provides a large set of MATLAB func-

tions, most of which are sub-functions that need not be called directly. They provide a

reasonably complete implementation of the 802.11a OFDM signaling and packet construc-

tion. In brief, a block of random data is generated and passed to mWLAN's PLCP_lla()

function, which returns a complex baseband transmit vector, sampled at 20MHz, represent-

ing one packet. After channel effects (noise, fading, multipath, etc) are imposed, the vector

is passed to parse_signal_lla(), which extracts and checks the transmission parameters

encoded in the packet header SIGNAL symbol. An FFT translates back from the time to the

frequency domain, and the demodulation and data decoding are performed by the mWLAN

functions DeMod_lla() and DeNod_post_lla().

A significant amount of "glue logic" code is required to piece together these mWLAN

functions. To simplify the effort, ensure repeatability, and guard against mistakes, a top-

level simulation script (sim_ER_lla) was developed. It reads experiment parameters (e.g.

packet size, data rate, Eb/No, number of packets to simulate, etc) from a file, so that many

different simulation experiments could be run without modifying the simulation source code

18

3 METHODS, ASSUMPTIONS, AND PROCEDURES

itself. Simulation results were logged into result files, and additional scripts were developed

to process the results and produce figures and tables.

In addition to the mechanics of simulation (looping through variations and iterations,

calling mWLAN functions, storing results, etc), our code implements whatever channel ef-

fects are specified in the parameter file. The mWLAN toolbox does not provide any channel

modelling functionality. Our software reads in a power delay profile (calculated from Martian

terrain maps by ATDI's ICS Telecom RF modelling software). Rayleigh fading is applied,

and the result is convolved into the complex baseband transmit vector for the packet. The

receiver end of the simulation estimates the channel by a linear least-squares method, and

weights the output of the FFT of each received OFDM symbol.

To validate the behavior of these tools, the results of our simulations were compared

to published results. Doufexi [ll]presented BER-vs-Eb/No results (their Figure 11) for a

channel with AWGN plus a 50ns exponentially decaying multipath power delay profile. We

ran our simulation with this channel model for the 6, 12, 36 and 54 Mb/s data rates, and

obtained very good agreement with the published curves. CommAccess Technologies publish

pure AWGN results in the User Manual for their eWWoB product (a GUI workbench based

on mWLAN). Their results are consistently 1.25dB (i.e. a factor of 64/48) better than ours.

After extended discussions with Dr Song An, who developed mWLAN, we found that the

difference is exactly attributable to the treatment of noise power in the non-data OFDM

sub-bands, in our respective definitions for Eb/No. The distinction is somewhat arbitrary,

and in the end, we decided to follow the convention used in Doufexi's published results,

which derives from what seems a more intuitive handling of noise power by the DFT of the

OFDM receiver structure.

IEEE 8O2.1 lb

The physical layer simulations for IEEE 802.11b were performed using the mWLAN

toolbox developed by CommAccess Technologies, Inc. The mWLAN toolbox provides several

modules associated with the transmission and reception of data at the physical layer. The
modules ava_able in mWLAN include:

• Bit Generation module to generate random data bits,

• Square root raised cosine filtering module for pulse shaping (oversampling) the raw

data for a given rolloff factor,

• CRC encoding module to encode certain fields in the physical layer header with the

CCITT-CRC 16 polynomial,

• Scrambler and descrambler modules to scramble and descramble the data bits in ac-

cordance with IEEE 802.1 lb standard specification,

• Modulation and demodulation modules for the basic data rates of 1 Mbps(DBPSK)

and 2 Mbps(DQPSK),

19

3 METHODS, ASSUMPTIONS, AND PROCEDURES

• Modulation and demodulation modules for the high data rates of 5.5 Mbps and 11

Mbps(CCZ),

• Modulation and demodulation modules for the PBCC mode (all data rates), and

• CRC check module to verify the validity of the received data.

All these modules are available in the form of Windows Dynamic Linked Libraries(DLLs)

and can be accessed using their associated MATLAB functions. Bit error rate and Packet

error rate simulations for all the data rates can be performed by writing MATLAB programs

which use these functions in a logical order.

The original module for 1 and 2 Mbps modulation had to be changed because it carried

out DBPSK and DQPSK encoding after spreading the data with the Barker sequence. The

correct way to go was to Barker spread the DBPSK and DQPSK encoded data to preserve

the autocorrelation properties of the Barker sequence. Corresponding changes were made in

the demodulator module as well. Also, the original module provided for only sub-optimal

demodulation of the CCK based 5.5 and 11 Mbps modes. New modules were developed to

perform near-optimal demodulation of the 5.5 and 11 Mbps modes.

After making these changes and additions, BER simulations were carried out in AWGN

channel to verify the correctness of the modules. The results for the 1 and 2 Mbps schemes

agreed very closely with the results published in [13]. The results for the 5.5 Mbps and 11

Mbps schemes agreed very closely with the results published in [14].

Several new modules were developed to incorporate the Martian multipath power delay

profiles(PDPs) generated by ICS Telecom. The PDPs obtained from ICS Telecom had

a 10ns resolution and had to be fractionally resampled to match the sample time of the

oversampled (square root raised cosine filtered) data. The power delay profiles were converted

to normalized channel impulse responses to observe the effect of multipath on BER vs Eb/No

for various data rates. Modifications were also made to observe the BER and PER as

a function of distance. Least squares channel estimation was carried out to estimate the

multipath channel impulse response at the receiver. RAKE receiver was implemented, which

significantly improved performance.

3.4.5 RF Environment on the Martian Surface

We have used the ICS Telecom software from ATDI [15] to obtain the multipath environment
on the Martian surface. DEM files are converted to ATDI's format for the Martian sites

(11m/pixel resolution), and are loaded into the software.

Site Selection

We have selected the Gusev Crater and the Meridiani Planum (Hematite) regions [16]

as example sites for our study. These two regions are chosen considering the mission science

and mission success criteria [16], [17]. The mission science criteria included evidence of water

on the Martian surface in the past. The Gusev Crater appears to have been a lake fed by a

river at one time. The Meridiani Planum region shows the chemical signature of Hematite

2O

3 METHODS, ASSUMPTIONS, AND PROCEDURES

minerals associated with ancient water locations. For mission success, the sites are chosen

"near the equator, low in elevation, not too steep, not too rocky, and not too dusty" in
addition to other factors. The locations of the selected sites are shown in Table 3.2.

Table 3.2: Sites for WLAN Performance Study.

Site Mars Latitude Mars Longitude

Gusev! - Site ! 14° 47' 39.35" S 176 ° 1' 29.18" E

Gusevl - Site 2 14° 58' 41.95" S 176 ° 2' 53.51" E

Gusevl - Site 3 15 ° 1Y 35.66" S 176 ° 4' 31.23" E

Hematite4 - Site 1 2 ° 11' 0.69" S -5 ° 53' 5.16" E

Hematite5 - Site 1 1° 52' 29.16" S -5 ° 25' 39.59" E

RF Model

The Irregular Terrain Model (ITM) has been used. It is a general-purpose propagation

model for frequencies between 20MHz and 20GHz. This model predicts the median attenu-

ation of a radio signal as a function of distance and the variability of the signal in time and

space. The predictions are based on electromagnetic theory and statistical analysis of both

terrain features and radio measurements.

The ITM source code has been modified for Martian parameters. Atmospheric attenua-

tion is negligible---actual calculations for a horizontal path on Mars' surface yield attenua-

tion of approximately 10-6 dB/Km at 2.hGHz [18]. The ITM source code for propagation

on Earth accounts for atmospheric refraction by introducing an "effective radius" multiplier

of K = 1.33. The effective radius used for Earth is K times Earth's physical radius. Mars'

atmosphere is so diffuse, even at the planet's surface, as to resemble a vacuum compared to

Earth's. Thus we assume atmospheric refraction is negligible in our study [18], [19]. We set

K = 1, and use an effective radius equal to Mars' physical radius. We note that in some

implementations, an effective curvature (inverse of the effective radius) is used.

3.5 Simulation of IEEE 802.11a/b MAC Layer using OPNET

During the summer of 2004, we considered alternatives for evaluating the MAC-layer perfor-

mance of wireless LAN protocols on the Martian surface. Ideally, such an evaluation would

be tightly coupled with the physical-layer model developed during the initial phase of the

research. Simulation software tools which we considered included OPNET, QualNet, NS2

and various MATLAB toolboxes and packages. We chose OPNET because of its ease of use

and wide user base. V_Teobtained three licenses and began training during the first summer

session.

We discovered that OPNET has limited capabilities in incorporating a physical-layer

model in a MAC-layer simulation, so we investigated alternatives for extending its capability

in this area. Two basic approaches were considered:

21

3 METHODS, ASSUMPTIONS, AND PROCEDURES

1. Find a reasonable, parameterized physical-layer model, based on previous studies, and

incorporate this into the OPNET simulator.

2. Program the physical-layer model using MATLAB, and then provide an interface be-

tween this tool and OPNET in order to perform a cosimulation.

The first approach would be preferable if an appropriate physical-layer model could be
........ _ - -- IIIUU-5|_IDAIclia_ac_crizeu using a _ugiciently - - -" number of paim_le_er_. The stmidard so_waxe

ules used by OPNET for simulating a wireless channel employ a very simple model, where

the probability of packet error is related straightforwardly to the signal-to-noise ratio [20,

Ch. 11]. These modules would have to be modified, so that significant effects such as mul-

tipath are included in the packet-error computation along with signal strength and noise

level. The modification would be accomplished by providing user-defined process modules,

written in C, according to a standard procedure supported by OPNET [21]. This approach

would be simpler than a full-up cosimulation, and the simulations would probably run much
faster. The reason for this is that OPNET views the transmission or reception of a packet as

a discrete event. In a cosimulation, each of these events involving a wireless link would give

rise to a physical-layer simulation requiring a much finer time granularity, thus multiplying
the simulation time.

If a parameterized model proves to be insufficient, then some form of cosimulation will

have to be used. To provide an appropriate interface, two options were considered:

1. Use OPNET External-Domain cosimulation tools to exchange data between OPNET

and MATLAB [22].

2. Use MATLAB tools for calling the MATLAB engine from the C code used to program

the OPNET process modules [23].

The OPNET External-Domain tools proved to be complicated, difficult to use, and not

well documented. Further, we were not able to find any literature referring to an OPNET-

MATLAB cosimulation that was carried out this way. By contrast, procedures for calling the

MATLAB engine from a C-language program are very well described in literature provided

by Mathworks, and this approach for linking MATLAB and OPNET has been successfully

used by other investigators studying the interaction between MAC and physical layers (see,

e.g. Dham [24]).

The approach makes use of the MATLAB Engine Library which contains a set of routines

that can call MATLAB from a C program. We can write C programs called MATLAB

Engine Programs that can open and close MATLAB, send data to and from MATLAB, and

send commands to be processed in MATLAB. Thus, we may use the Engine Library to

pass information between OPNET and MATLAB via the C-language user-provided process
modules discussed above.

Here is a detailed procedure for preparing an OPNET-MATLAB cosimulation using this

approach on Windows XP:

22

3 METHODS, ASSUMPTIONS, AND PROCEDURES

1. Ensure that Microsoft Visual C++ is installed on the computer

2. Open the OPNET Modeler software. Click on Edit-.Preferences

3. The preference bind_shobj_prog should have the value bind_so_msvc

4. The preference bind_static_prog should have the value bind_msvc

5. Specify the path where the MATLAB Engine Library files are located. This can be

done by editing the bind_shobj_flags preference. Change the value to

/LIB PATH: :C: \MAWLAS6p5\extern\lib\win32 \microsoft \msvc60

6. To use the MATLAB engine the following library files have to specified.

• libeng.lib

• libmex.lib

• libmx.lib

• libmat.lib

This can be done by changing the value of the bind_shobjlibs preference to libeng.lib

libmex.lib libmx.lib iibmat.lib

7. Close the preferences dialog box

8. Open the Process Model by clicking on File--*New--_Process Model

9. Define the state variables by clicking on the SV icon and the temporary variables by

clicking on the TV icon.

10. Click on the HB icon and specify the relevant header files.

11. Click on the Create State icon (the icon at the top left corner) and place a state in

the work.space

12. Enter the C program that will call MATLAB by clicking either on the top half of the

state (Enter execs) or the the bottom half of the state(Exit execs)

13. Compile the program to check for compilation errors

14. Click on Intefaces--*Process Interfaces. Chmage the initial value of begsim intrpt

attribute to enabled

15. Associate this process with a node and the node with a network.

23

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.6 Outdoor IEEE 802.11b Measurements

In order to validate the IEEE 802.11b physical and MAC-layer simulations, actual measure-
ments of IEEE 802.11b must be made in the outdoor environment. These measurements

include data rates, bit error rates (BERs), packet error rates (PERs), power delay profiles,

signal strength, etc. For the validation work, we considered three environments: free-field,

simple reflection, complex terrain. For the free field environment, we conducted experiments

at the football stadium parking lot on the N_vISU campus. The iu_'-_has a _lave_ surface,

is very flat and has virtually no vegetation or man-made objects. The nearest man-made

objects are at least 200 m away from our staging area. The simple reflection environment

consists of a large (9 r x 6') steel reflector located on the football stadium parking lot. Fi-

nally, we have chosen the Dripping Springs site (La Cueva rock formations) for measuring

the IEEE 802.11b protocol performance in a complex terrain. Figure 3.8 shows the measure-

ment equipment on the parking lot and Figure 3.9 shows the reflector. Figure 3.10 shows

the topographic map of the setup at La Cueva (rock formations) at Dripping Springs. The

complete field test procedure is given in Appendix E.

The measurement setup for the free-field experiments includes a basic IEEE 802.11b

wireless access point/router elevated to either 1 m or 2 m height with a laptop hardwired

to it. In addition both a laptop (with an IEEE 802.11b wireless card) and the Yellow-

Jacket are located at various distances along a radial path from the access point. The entire

setup is portable and battery powered. A datallow from either Transmission Control Proto-

col/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP) based source is initiated

between the laptops using the network bandwidth measurement software application Iperf

that is described below. During the dataflow, Iperf can report the data rate and, in the case

of UDP, datagram errors. The Yellow Jacket (Y J) is able to log data such as relative signal

strength and relative correlations (power delay profile). In addition, Yellow Jacket logfiles

can be geocoded with location and time information. Finally, a set of MATLAB programs

were developed to aid in the visualization of Yellow Jacket logfile data. A short User's Guide

is given in Appendix D.

Considerable effort was made to disable all power-saving features on the laptops and to

eliminate all unnecessary processes (both operating system and applications) so that sus-

tained and stable data transfer could be made. Without the power-saving features disabled,

the results found with Iperf indicated that the data transfer rates were very erratic because

the wireless card's RF interface would be cycled on and off.

The use of commercial 802.1 lx hardware was an expedient and relatively inexpensive way

to verify the performance of this protocol. The problems such a wireless network faces in a
terrestrial environment can in some cases be translated to a simulated Martian environment.

The primary application of 802.11x wireless, in buildings and public places, is not directly

applicable and some of the aspects of the design are not best suited for field use (low power,

omnidirectional antennas, sealed units, and AC power needs).

The choice of Dell PC laptops was driven by the ATDI HerTZMapper software for Win-

dows. This enabled the experimenters to use a single computer to run simulation models

in the field and use the same computer for the data throughput measurements. Otherwise,

24

3 METHODS, ASSUMPTIONS, AND PROCEDURES

Figure 3.8: Measurements on the NMSU football stadium parking lot. In the foreground is

a laptop hardwired to the wireless access point/router elevated to 1 m. In the background

are personnel measuring RF data with the Yellow Jacket and data rates with another laptop.

Flags are spaced every 20 m to a distance of 100 m.

25

3 METHODS, ASSUMPTIONS, AND PROCEDURES

(a)

(b)

Figure 3.9: (a) Reflectormade of steelbookshelves and (b) setup for measurements in the

simple reflectionenvironment.

26

3 METHODS, ASSUMPTIONS, AND PROCEDURES

".\

_.t __

Figure 3.10: Arrangement of IEEE 802.11 access point (TX) and node (RX) at La Cueva

Crock formations) in Dripping Springs.

a Mac PowerBook G4 with built-in "Airport" was available. During our testing, we found

that the performance of the Apple Airport card (firmware version 9.42) was not as good

as the Intel PRO/Wireless 2100 card in the Dell Latitude D600. But the burden of the

Microsoft Windows XP operating system on Mac users was a major factor in the time it

took to establish reliable, repeatable measurements with our wireless network.

Eventually, we had to establish an independent Wireless Local Area Network (WLAN)

with no connection to the rest of the world or internet. We set up Wired Equivalent Privacy

(WEP) to keep others from easily accessing our WLAN and adding mystery to our mea-

surements. The Mac OSX has a utility called "Location Manager" that was a great help in

changing the connections to the wireless Access Points CAP) or campus internet as needed.

The XP OS did not have a similar capability (even on a laptop) and it was difficult, indeed,

to switch from a wireless to ethernet link or return. A reboot was usually necessary. Note:

This may have been a Windows issue that has since been resolved in Service Pack 2.

The necessity of an independent, self-contained, WLAN seems obvious, but our initial

field tests brought out even more insidious elements that required tighter control. Our first

field test to establish the distance limits of performance with 802.11b showed wild variations

in performance, not related to distance. The appearance of periodic deteriorations in transfer

rate caused us to suspect that an internal operating system function on the Dell was taking

CPU cycles. A suspicion of "spyware" or background network access software created a need

to investigate the Windows XP OS in depth. (see, for example, [25] and [26] for extensive

additional information on these topics.)

There is a function of the XP OS that checks periodically for the availability of any type

of network access, be it Modem, Wireless or Ethernet. This is because the Windows OS back

27

3 METHODS, ASSUMPTIONS, AND PROCEDURES

to Microsoft.com for software updates or other internal requirements. Spyware will attempt

to upload information gleaned from a user's acti_fities and report them on a periodic basis to

an unannounced host. These effects can range from occasionally annoying to compromising

the integrity of the computer. In either case, from the point of view of our experiment,

they represent an uncontrolled network access and can affect the measurements made over

the network by being a background noise source. Much effort was put in to disable these

functions, and then to keep the PC laptop "sanitized" by never letting it connect to the

general internet again. This complicated the exchange of data from the laptop to desktop

computers in the lab, but we used a USB flash disk to transfer the necessary files and keep

the laptop from being violated by connecting over an open Internet.

Further study of how Windows implements the Internet Protocols led to the measurement

of Bandwidth Delay Product which is a measure of network performance. This Bandwidth

Delay Product is the product of multiplying the "bottleneck bandwidth" (slowest hardware

link speed) by the Round Trip Time (RTT). RTT is most readily measured by a network

utility called ping. With ping, an Internet Protocol (IP) address is probed and the response

time (in milliseconds) is reported. From the NMSU campus internet, a ping to NASA Glenn

takes about 80 ms. We found that a ping over our WLAN to the Dell, one meter away, took

about 300 ms. Clearly, there was something in our link that was amiss. Testing all possible

configurations of wired and wireless using the D-Link AP focused the bottleneck at the Dell

laptop wireless card only. It seemed a daunting task to determine what, if anything, could

be done to locate the level at which this link was failing. There are (at least) two setup

or configuration locations for the wireless card: the Windows Network Connections and the

Intel ProSet application (see Figure 3.11). Two settings are made available for control - the

RF power and the device power management configuration. The default RF power is set to

highest, but the power/performance default is set for lowest power (appropriate on a laptop).

What is not immediately clear is that this setting is not merely battery power usage, but

Intel's implementation of Power Save Polling, an option in 802.11 to %urn off" a node when

network usage is minimal. Not all AP's recognize Intel's implementation and apparently

we were caught in that situation. It was fortuitous that a simple change of this setting

improved the wireless performance of the Dell/Intel laptop from intermittent and unreliable

to functionally usable. (see, for example, [27] for further information on this topic.)

In order to create a stable, realtime, testbed for IEEE 802.11 hardware it was necessary

to severely restrict the configuration of the Dell laptop, and to a lesser extent, the Mac

PowerBook. For best performance, the only non-operating system application running would

be the command window where Iperf executes. Simultaneously executing network monitors

or Secure Shell functions would allow enough CPU resources to keep the wireless data stream

uninterrupted in any non real-time operating system (Windows, Limnx, or Unix.).

We also found that the UDP protocol in Iperf takes all the available CPU cycles on the

Client computer it is running from. This is addressed in a forum response from ncsa. In

order to guarantee a continuous data rate, the Iperf program uses "busy waiting" to provide

accurate timing and subsequently absorbs all CPU resources to provide the stream. As Iperf

is a performance testing tool, it should properly be used temporarily and as the only running

28

3 METHODS, ASSUMPTIONS, AND PROCEDURES

% ,,,mnnnnnn

mocnnlnmdwJ au_gt

Figure 3.11: Intel Proset WLAN configuration window.

application [28].

Before finding Iperf, we had tried to transfer big data files over 802.1.b using AOL Instant

Messenger, iTtmes, and Quiektime. While the free Iperf tool might leave us wondering what

we're seeing, it is, at least, quite controllable. The first realization we came to was the use

of the terms "client" and "server"; they seemed counter-intuitive. Whatever the history

of networking terminology, in Iperf the "client" sends the UDP data TO the "server" and,

therefore, the client should be connected at the wireless link under test.

3.6.1 The Iperf Network Measurement Bandwidth Tool

Complete information regarding the installation and use of Iperf can be found at

http://dast.nlanr.net/Projects/Iperf/

Iperf must be installed on two computers connected (wired or wirelessly) to a LAN or the

Internet. One computer is designated as the server and the other as the client. Dataflow

originates at the client and terminates at the server. For our setup, the laptop hardwired to

the access point is the Iperf client while other laptop is the Iperf server. On UNIX systems,

Iperf is executed by typing Iperf commands in a terminal. On Windows systems, Iperf is

executed by typing commands in the command line window.

An example of a TCP/IP data flow using Iperf is as follows. On one PC we type:

iperf -s-i 1

to denote this PC is the Iperf server and to update measurement information every one

second. On the other PC we type:

29

3 METHODS, ASSUMPTIONS, AND PROCEDURES

iperf -c 10.0.0.1 -i 1

to denote this PC is the Iperf client which is connecting to a server whose IP address is

assumed to be 10.0.0.1, and to update measurement information every one second.

An example of a UDP data flow using Iperf is as follows. On one PC we type:

iperf-s-u-i 1

to denote this PC is the Iperf server, UDP data(low, and to update measurement information

every one second. On the other PC we type:

iperf -c i0.0.0.I -u -b 5.5M -t 60 -i 1

to denote this PC is the Iperf client whose IP address is assumed to be 10.0.0.1, a UDP flow

at 5.5 Mbps for 60 seconds, and to update measurement information every one second. In

the setup used in the outdoor measurements, we found that we could only sustain 5.5 Mbps

without significant datagram errors in the free-field environment. This appears to be the

baseline capacity of the wireless link in our setup.

The data output from Iperf can be redirected to a file for later analysis. Typical data is

shown in Figure 3.12:

S:orees" l:imtem.fu_ m_ _ _

UDP b_for e:l.ze: 8omm l[]J*Tte (default)

_)

[14)24] 2.0- 3.1J soc &'ZZ S.S4J 3.253 i_, 488 (nx)
[19243 3.8- 4.0 m 673 Iflhjtes 5.52 3.198 8/ 489 (Ix)
[1924] 4.0.- 5.iJ se¢ 6?2 laljtem S.SO 3.219 8/ 488 (llx)
[1_24] 5.8- c-.ll sec S?2 EB_.es 5.58 3.2S3 i_ 4Gll (llx) I
[1_4] 6.8- ?.o _ m_ s.4s 3._ 8,' _4 (ex)
[1924] ?.o- o.o Be© 673 5.52 3.230 I/ 489 (8x) {
[,srz4] e.o- _.8 _e_ _;'7"z mJ,_c.e_ s.so 3.24o 8,' 4_J (8x) I
[1_41 9.1_lO.lJ rose £?3 5.52 3.2112 8/ 4_9 (Sx) I
;[15_4] e.O-lO.O _ 6.S6 m_e= S.SO 3._e'_ o/ 4s_ (8x) !
ii *

Figure 3.12: Example output from Iperf.

3.6.2 YellowJacket and IEEE 802.11b

The Berkeley Varitronics Systems Yellow Jacket PLUS b [29]is an 802.11b receiver wrapped

around an HP (Compaq) iPAQ (model 5150 in ours) Personal Digital Assistant (PDA). The

PLUS version includes a Global Positioning System (GPS) receiver and antenna jack.

Software on the iPAQ provides an interface to the receivers and makes measurements of

the 802.11 RF environment along with location data for the position of the Yellow Jacket

3O

3 .METHODS, ASSUMPTIONS, AND PROCEDURES

(Y J). The data can be logged on the iPAQ and then transferred to a PC (Windows only) via

the built-in infrared (ix) port on the iPAQ. A BAFO brand ir/USB interface is provided by

BVS, but we could never get it to work with our Dell Latitude laptop. Since the Windows

OS gives severn options to configure a new communications device, much frustration was

expended just to establish communications with the YJ. We found that the built-in ix port on

the Dell laptops was not enabled by the default OS and BIOS settings. With assistance from

a systems engineer familiar with the BIOS, we finally established ir communications with the

YJ. But, that link is quite slow (is it 9600 baud?) and there are a number of translations that

must take place to view YJ data: a translation from ir to file using Microsoft ActiveSync, a

translation from PDA format to "desktop" format, a translation from BVS format to Excel

using BVS "Chameleon" and finally using MS Excel to create a graph. We eventually wrote

custom MATLAB software to analyze the YJ logs.

Some of the features of the YJ don't work as well as we would like, but it is nonetheless
a unique and useful tool:

1. The GPS receiver performance is mediocre compared to the handheld units meant for

hiking or navigation.

2. The screen snapshot function of the YJ only works for the Spectrmn screen.

3. The Marker function to update the log file does not work - this would have been a way

to synchronize the YJ and Iperf data.

4. The Relative Correlation screen only logs 22 data points out of the 44 measured.

5. The Delay page does not log at all, although that data can be derived.

.

.

The unit has an odd behavior with the RSSI display; this signal strength has spikes to

a low value whenever the data rate increases toward the 11 Mbps rate.

The log files slow their update as the data rate increases. At the management and

housekeeping rate of 1 Mbps, the log updates around 8 Hz, but when data is streaming
this slows to 1 Hz or less.

8. The Relative Correlation display can easily "alias" or wrap- around when the "chip"
delay exceeds 7 chips.

9. Finally, the battery performance of the iPAQ is not appropriate for field equipment.

We learned much about the 802.11b protocol. First, while the advertised speed is 11

Megabits per second (Mbps), we could never achieve that as a channel throughput rate. In

fact, it is documented [30] that, due to handshake overhead and synch headers, the maximum

possible data throughput rate is only 7.1 Mbps for UDP and 5.9 Mbps for TCP links. We

initially tested, using Iperf UDP, with a transfer rate of 7.35 Mbps (empirically derived) in

the lab. This was used in the field to stress the link and determine the limits of performance,

with distance being the only variable. After that test regimen, we lowered our rate to 5,5

31

3 METHODS, ASSUMPTIONS, AND PROCEDURES

Mbps to have some headroom and get reliable performance out of the link. In our field

testing we constantly ran up against the issue of low power versus distance. We needed

to increase the TX-RX distance to simulate long multipath or delayed reflections. But, at

the same time, the loss of RF power (r-squared free space loss) would sometimes put our

signal too near the noise floor. The use of directional antennas was required. The possibility

of purchasing an 802.11 RF power booster exists, but the expense was not justified. The

Cushcraff $24012P panel antennas offer +12 dBi gain due to the pattern. One aspect of

the 802.11 specification serves to meet an FCC requirement that limits the effective radiated

power of 802.1 lb devices - the combination of RF power and antenna gain cannot exceed 4W

EIRP [31]. One way the manufacturers hold to this rule is by using an antenna connector

that makes it inconvenient to swap antennas on an Access Point. These "reverse gender"

SMA connectors keep the AP/antenna combination proprietary. We either replaced the

SMA on the AP or used a purchased adaptor to connect to the Cushcraft panels. We were

still under the legal limit after the modification.

We learned that two AP's will not connect wirelessly; a "bridge" or "router" is needed

for this function. We found that the antennas internal to a laptop might be in an unknown

orientation. We did some limited experimentation to find an optimum laptop orientation,

which wasn't usually horizontal on a desktop! In the close proximity of an office environment,

even the polarization loss from vertical to horizontal may be insignificant. For field use,

commercial AP's don't offer enough P_F output, and should be possible to power from DC

directly; we had to carry bulky DC/AC inverters to run the measly "wall warts" for the
AP's.

In order to use two directional antennas, we needed another standard SMA connection to

our laptops. The Dell Intel wireless card was not amenable to having an external antenna.

We tried a Linksys WUSBll 802/USB dongle, but it never achieved error free performance

with the drivers provided. We borrowed a Linksys WET11 Bridge and connected via ethernet

(cat5 cable) to the Dell (the Mac is cat5 to the D-link hardwire). Using the SMA gender
changer, we could then have two wireless connection to the Cushcraft directional antennas

(The YJ antenna is a standard SMA). In our experience, any change or addition to the

Dell/Windows laptop was a lesson in frustration for Mac users.

The results of our field testing confirmed most assumptions about the performance of

802.11b. We had incremental surprises and detours.

1. The performance of a commercial AP with its omnidirectional antenna falls off after

about 60 meters in the free field.

2. The presence of a reflector about 40m away does not destroy an established 802.11b
Iperf link.

3. The presence of a reflector about 90m away, along with the long path/low power

situation does affect Iperf performance.

4. The intentional orientation of the RX antenna in a multipath configuration (La Cueva)

did result in a substantial degradation of Iperf performance.

32

4 RESULTS AND DISCUSSION

4 Results and Discussion

4.1 Introduction

In this section, we describe the results from the validation study and the physical layer sim-

ulations. The validation study is based outdoor measurements made in the region around

NMSU. The simulation study is to estimate the characteristics of the physical layer perfor-

mance for the 802.11 a/b protocols on the Martian surface based on the DEM data.

4.2 Validation of Power Delay Profile Simulations

Power Delays Profiles were simulated at the Tortugas Mountain and Dripping Springs sites

and a simple RF reflection measurement was also made at these sites. Table 4.1 shows

the direct path and reflected path RF measurement results. For Tortugas Mountain, the

reflection is 24 dBm less than the power for the direct path (since the sidelobe power levels

were below the noise floor, the 24 dBm figure is entirely due to reflected power).

Table 4.1: PDP validation data.

Relative Power Level Difference Reflection

Between Direct and Reflection Paths Delay

Tortugas Mountain-Simulation 20 - 25 dBm 0.6/zs

Tortugas Mountain-Measurement 23 dBm 1.4 #s

Dripping Springs-Simulation 26 dBm 0.7 _s

Dripping Springs-Measurement 20.5 dBm 0.87 ps

Using the appropriate DEMs, antenna patterns, radiated power levels, and positions of

transmit and receive antennas, the power delay profiles were simulated for the local sites.

Figure 4.1 gives the PDPs for Tortugas Mountain and Dripping Springs. In these figures,

we see for Tortugas Mountain a strong response occurs at approximately 1.4 #s and is

25 dBm down from the direct path and for Dripping Springs a strong response occurs at

approximately 0.7 ps and is 26 dBm down from the direct path. This agrees quite closely
with measurement data.

4.3 Power Delay Profile Measurement Data

Figure 4.2 shows the PDPs measured using the Yellow Jacket at the NMSU football stadium

parking lot (free field). With the access point at a fixed location, the PDP was measured at

40 m and 80 m distances in the south and east directions (south leg and east leg). The plots

show the PDP (relative correlation vs. delay in chips) at various points in time. Figure 4.3

shows the PDPs measured at the NMSU football stadium parking lot in the presence of the

reflector. With the access point at a fixed location, we measured the PDP at 40 m with and

33

4 RESULTS AND DISCUSSION

_J,-_i,,lll1/111I I I IIII IIIHI

Figure 4.1: Power delay profile simulation results from (a) Tortugas Mountain and (b)

Dripping Springs.

34

4 RESULTS AND DISCUSSION

without the reflector. We clearly see in Figure 4.3(b) the secondary path delayed by 3 chip

periods relative to the direct path centered at 0 chips.

Figure 4.4 shows the PDPs (relative correlation vs. delay in chips) at various points in

time measured using the Yellow Jacket at the La Cueva rock formations at Dripping Springs

(complex multipath). Figure 4.4(a) illustrates the PDP when the antennas were pointed

directly at each other. With this setup, there is essentially a single, direct path. Figure

4.4(b) illustrates the PDP when the antennas were pointed at La Cueva. With this setup

there is clearly, significant multipath with the assumed direct path centered at 0 chips and

secondary reflections around 1.5 chips and -2 chips (aliased).

4.4 Outdoor IEEE802.11b Results-Stadium Parking Lot

Prior to measuring the performance of IEEE802.11b outdoors in a complex multipath en-

vironment, measurements were made in the presence of a single reflector (three large steel

bookshelves) in the NMSU football stadium parking lot. In the absence of the reflector the

parking lot is essentially a free field (see previous subsection). As described in the previ-

ous section, a baseline measurement was made without the bookshelf (directional antennas

pointed toward each other) and a measurement was made with the reflector (mainlobes

pointed at the bookshelf with first sidelobes pointed directly toward each other). The mea-

surements were of network bandwidth (fastest data rate without significant UDP datagram

loss for the baseline) and percentage of received packets. Figure 4.5 shows plots of the data

for a 100 second time period. For the free field we see virtually no packet loss at a sustained

rate of 5.5 Mbps, however, in the presence of a very simple reflector, we have significant

packet error rates while attempting the same rate UDP data flow.

4.5 Outdoor IEEE802.11b Results-Dripping Springs

In order to access the performance of IEEE802.11b in the presence of multipath such as

that found in an outdoor environment, several tests were conducted at the La Cueva rock

formations at Dripping Springs. These tests were described in the previous section. For

the direct path test, both directional antennas were pointed straight at each other and the

resulting network bandwidth is given in Figure 4.6(a). This result serves as our baseline

since there is no multipath involved. For the multipath test, each antenna was pointed at La

Cueva which resulted in a strong multipath environment. The resulting network bandwidth

is given in Figure 4.6(b).

4.6 Simulated WLAN Performance at Different Sites

Data packets for 802.11a or 802.11b were generated according to the PPDU format shown in

Fig. 3.7. The simulation software is developed around the mWLAN toolbox from CommAc-

cess Technologies [32]. The data packets from the transmitter are sent through a random

multipath channel generated for the particular transmitter and receiver locations on the

35

4 RESULTS AND DISCUSSION

m_

50.

:, ;ii •;iil ;; iiiiiiiiiililiii:

., _._,, "

,,'¢ ?'Li_ i i

- /¢_?_,//ab ,_:I/¢! :,:d ,J --_ "

• , _ _,: _/j

(io 4o I 2

(a)

o -2

(b)

Catm

_i0.

21).

O_

W

¸ • :

1 2

lO.

"'%\%,

,, ! _:] f , _ '

(c) (d)

Figure 4.2: Power delay profiles of the NMSU football stadium parking lot (flee field) as

measured using the YeUowJacket. Plots show the PDP (relative correlation vs. delay in

chips) at various points in time. (a) South leg, 40 m distance; (b) South leg, 80 m distance;

(c) East leg, 40 m distance; and (d) East leg, 80 m distance

36

4 RESULTS AND DISCUSSION

!-
O_

, ,_ _-.iii ii: i i i

' didl::,. _ : ,7_- " --. t "t _Z'i//,J ' _z/¢"\ _ _ ,, :.
I) I

I

liiliI_Ii o -2 (:Nm iIi o -2

(a) (b)

Figure 4.3: Power delay profiles of the NMSU football stadium parking lot with and without

a reflector present. Plots show the PDP (relative correlation vs. delay in chips) at various

points in time. (a) without reflector showing a single, direct path centered at 0 chips and

(b) with a reflector showing a secondary path at 3 chip periods and a direct path centered

at 0 chips.

37

4 RESULTS AND DISCUSSION

Figure 4.4: Power delay profiles of the La Cueva rock formations at Dripping Springs. Plots

show the PDP (relative correlation vs. delay in chips) at various points in time. (a) with

directional antennas pointed directly toward each other, direct path centered at 0 chips and

(b) with directional antennas pointed toward rock formations, direct path centered at 0 chips

and multiple secondary paths.

m

N

11 t J
I i! 'i i i
; t !i !1

i

(a) (b)

t_

i

L,i: t

tl

ISO

Figure 4.5: Outdoor IEEE802.11b network bandwidth and percent UDP received packets

for (a) free field and (b) simple reflection.

38

4 RESULTS AND DISCUSSION

r_ *.

i J , i
10 2O go _0

(a)

80

II

2

• _ . I i i i i

20 30 40 50 60

t (_c)

(b)

Figure 4.6: Outdoor IEEE802.11b network bandwidth and percent UDP received packets

for (a) free field and (b) multipath environment.

Martian surface using the ICS Telecom software. The received packets are processed by the

corresponding receiver. The 802.11b receiver's performance is studied with and without a

RAKE structure. Note that a RAKE receiver coherently combines different multipath con-

tributions before detection and thus improves performance. For both 802.11a and b, only

truncated channel impulse responses are estimated at the receiver using the corresponding
PLCP Preamble.

4.6.1 Performance versus distance between the transmitter and the receiver

In order to obtain packet error rate (PER) and bit error rate (BER) results versus dis-

tance, it is necessary to estimate both the received signal and the input-referred noise for

an 802.11 receiver on the Martian surface. The RF propagation simulations using ICS Tele-

com provide an estimate of electric field intensity at the receiving antenna. A first-order

estimate of receiver noise is based on a noise figure FR = 7.2 dB for a typical 802.11a re-

ceiver implementation [33]. Assuming noise figure is measured for a reference temperature

To = 290 K, the equivalent noise temperature for the Martian receiver may be calculated [34]

as TR = (FR -- 1)T0 = 1522 K. An omnidirectional antenna pattern sees roughly half sky and

half surface, so we approximate the brightness temperature (Tb) as Tb = Tp/2 = 250 K / 2,

where Tp is the physical temperature. Further assuming a radiation efficiency r] = 0.9, we find

an equivalent temperature for the antenna of TA = 7?Tb+ (1 -- 7/)Tp = 138 K. Thus, our sim-

ulations use an equivalent noise temperature for the receiver input of T_q = TA + TR = 1560

K.

The packet error rates (PER) for various distances (d) between the transmitter and

39

4 RESULTS AND DISCUSSION

receiver are given in Tables 4.2-4.6. Note that a CRC failure is considered as a packet

error in 802.11b while any error in the OFDM SIGNAL symbol constitutes a packet error

in 802.11a. Transmit power is 1 W, and antenna height is 1.5 m above the ground, for both
802.11a and b. The 802.11b results in the table are obtained without RAKE. The data rates

for 802.11a and b are 12 Mbps and 11 Mbps respectively.

The packet error rate tables show that both 802.11a and b perform well for receivers

within several hundred meters from the transmitter. In some cases, we find better packet

error performance at a longer distance (d). For example, with 802.11a at Gusev1 Site2, PER

at 500 m appears to be better than the PER at 200 m. Similarly, in the case of Hematite4

Sitel, the PER at 200 m is better than the PER at 100 m. In the case of Gusev1 Site2,

we observe that while the received power is higher at 200 m, the rms delay spread in this

case is smaller for d = 500 m, resulting in fewer packet errors. A similar comment can be

made about the Hematite4 Site1 PER result. In the case of 802.11b, the performance at 100

m is better than the performance at 50 m for Gusevl Site2 as well as for Hematite4 Sitel.

We notice a similar phenomenon as observed in the case of 802.11a, that is, although the

received power is smaller for 100 m, the rms delay spread becomes smaller too. Thus, it

appears that when sufficient power is transmitted (1 W in this case) the multipath effects

play a dominant role on the performance of both 802.11a and 802.11b. Finally, we note that

the results with very low PER values must be used with caution as they are not statistically

significant due to the small number of packet errors observed from transmitting 20,000 data

packets.

The effect of distance on the bit error rate (BER) performance is shown in Fig. 4.7 for

Gusevl Sitel. The BER result for each distance ks an average over four different locations at

the same distance. Transmitted power is 1 mW for all cases, and 802.11b results are obtained

using a RAKE receiver. The data rate for 802.11a is 12 Mbps and the 802.11b transmits at

the rate of 11 Mbps. In the case of 802.11a, the overall BER seems to increase with distance

except for a strong dip at 500 m. This BER dip is believed to be due to favorable terrain

conditions at that distance and it agrees well with the PER result in Table 4.2. The BER

for 802.11b seems to be nearly constant up to distances of 1000 m except for a dip at 500 m
similar to 802.11a.

4.6.2 Effect of transmit power on PER

Although Tables 4.2-4.6 show PER results for 1 W of transmit power, it is instructive

to study the effects of transmit power on the PER. This is investigated via Table 4.7 for

Gusevl Sitel. The table shows that when the transmit power is small, 802.11b seems to

be doing better than 802.11a. As the transmit power increases, the performance for both

802.11a and b tend to flatten out for high transmit power, but 802.11a shows much better

performance than 802.11b. Note that the rms delay spread for this location is 0.105 #s

for 802.11a, and it is much less than the available 0.8 #s guard period. Thus, 802.11a can

handle this delay spread quite well, and its performance keeps improving with the transmit

power. As the transmit power becomes large, however, the multipath events with delays

4O

4 RESULTS AND DISCUSSION

Table 4.2: Packet Error Rate Performance at Gusevl Site1.

in 20,000 packets.
d

(m)

20

50

100

200

500

1000

A '-' indicates zero packet errors,

rmsdelayspread Received power PER

(_s) (nW)

802.11a 802.11b 802.11a 802.11b 802.11a1802.11b

0.194 0.268 40.9 79.3 0.0008 i 0.0983
0.144 0.203 38.6 75 0.0004 0.0768

0.105 0.155 36.4 71 0.0001 0.0572

0.180 0.153 70.0 206 0.0001 0.0281

0.091 0.092 61.7 145 0.0158

17.3 1.86 .00011 0.0009 1 0.9619

Table 4.3:

d

(m)

2O

5O

100

2OO

50O

Packet Error Rate performance at Gusevl Site2.

rms delay spread Received power PER

802.11a 802.11b 802.11a 802.11b 802.11a 802.11b

0.146 0.186 38.2 79 0.0003 0.115

0.131 0.155 26.7 56 0.0004 0.082

0.095 0.126 25.8 54 0.0001 0.032

0.713 0.719 0.0822 0.16 0.099 0.51

0.472 0.476 0.0114 0.02 0.067 0.53

Table 4.4: Packet Error Rate performance at Gusevl Site3. A '-' indicates zero packet errors,

in 20,000 packets.
d

(m)

20

50

100

200

500

1000

rms delay spread Received power PER

(_s) (_W)
802.11a 802.11b 802.11a 802.11b

52.0 119 0.0002 0.1

45.2 102 0.027

0.016

802.11a 802.11b

0.143 0.17

0.055 0.1

0.055 0.065

0.070 O.O89

11.2 9.2

0.742 0.718

45.9 103

34.8 81 0.0001 0.03

.00001 0.0001 1 0.54

.000001 .00003 1 1

41

4 RESULTS AND DISCUSSION

Table 4.5: Packet Error Rate Performance at Hematite4 Site1.
d rms delay spread Received power PER

(m) (Its) (nW)
802.11a 802.11b 802.11a 802.11b

20

50

100

200

500

1000

0.741 0.634

0.747 0.625

0.0262

802.11a 802.11b

59.2 114.27

49.1 94.02

47.0 80.62

29.3 46.07

22.5 43.24

.0374 0.167

0.0272

0.2113

0.2844

0.584 0.564 0.0138 0.1667

0.289 0.297 0.0026 0.1196

0.069 0.087 0.0001 0.0478

0.696 0.685 0.4405 0.3312

Table 4.6: Packet Error Rate Performance at Hematite5 Site1.
d rms delay spread

(m) (_s)

2o

50

lOO

2oo

500

lO0O

Received power

(nw)
PER

802.11a 802.11b 802.11a 802.11b 802.11a 802.11b

1.031 0.913 45.9 88.54 0.0037 0.1280

0.755 0.694 36.2 69.04 0.0012 0.0950

0.475 0.498 29.2 55.97 0.0004 0.0724

0.178 0.228 28.6 55.30 0.0001 0.0354

0.i60 0.204 42.3 88.95 0.0004 0.0370

0.287 0.316 2.1o-7 2.1o-8 1 1

Table 4.7: Effect of Transmit Power on PER for Gusevl Sitel at a distance of 100 m from

the transmitter. The 802.11b receiver is implemented without a RAKE structure.
Transmit Power PER for 802.11a PER for 802.11b

1 ttW 0.985 0.4183

10 #W 0.381 0.1719

100 #W 0.0225 0.1011

1 mW 0.0021 0.0625

10 mW 4 x 10 -4 0.0612

100 mW 2.5 x 10 -4 0.0555

1 W 2 x 10 -4 0.0516

42

4 RESULTS AND DISCUSSION

o

o
u.

I

tr
W
m

100

Io-'

lO-2

lO-_

1o-4

• i i t

i...........i..

I i i i | i

20 50 1O0 200 500 1000

Distance from Transmitter (meters)

Figure 4.7: BER Performance for 802.11a and b at Gusevl Sitel.

exceeding 0.8 #s start affecting its performance with adjacent symbol interference. This

limits the performance improvement. In the case of 802.11b too, the presence of multipath

propagation effects does not allow performance improvement beyond a certain value.

4.6.3 BER Performance versus SNR

The bit error rate (BER) performance results versus SNR are shown in Figs. 4.8-4.17 for

IEEE802.11a and b. In the case of 802.11a, we notice that lower data rates provide much

better BER performance giving several dB advantage over higher rates. However, it is

also to be noted that lower rates need to transmit longer than higher rate modes in order
to send the same amount of information. We also see that the curves tend to flatten at

the higher SNR region as the performance becomes more dominated by the delay spreads.

Although the rms delay spread is within 0.8 #s for the cases studied in these figures, there

are still multipath channels beyond 0.8 #s producing adjacent symbol interference. The

BER performance curves for 802.11b show that multipath channels can severely affect their

performance. Figures 4.13-4.17 show results without a RAKE structure. Another interesting

observation is that CCK performs better than the other modulations in some cases.

4.6.4 Effect of using RAKE for 802.11b

The use of a RAKE receiver can significantly improve the BER and PER performance for

802.11b. The BER performance improvements can be seen comparing Figs. 4.13 and 4.18

for Gusevl Sitel. The PER performance improvements are summarized in Table 4.8. The

table shows that RAKE can provide PER improvement by a factor as high as eight in this

43

4 RESULTS AND DISCUSSION

o i i i 'lo .t '. : : i--_._ Mbpsl_

''_'_- "_ : i I -_3---18Ubpsl1

.lO-'. :, i "i............

=_1°-_I :......... •..... :...... :........

,oI.........ii...
10 0 5 10 15 20 25 "

Eb/N 0 (dB)

Figure 4.8: BER Performance for 802.11a at Gusevl Sitel.

" : i I _ 36 Mbps
: I _ 18 Mbps

10-

10_

10 -4
5 10 15 20 25 30

Eb/N 0 (dB)

Figure 4.9: BER Performance for 802.11a at Gusevl Site2.

44

4 RESULTS AND DISCUSSION

10° E r T T 1 ,

r _"_-""-:,,._ °'---._ i : --B-- 18MbPSl
r "%. ::

10 -3 " _

10- -- " "
5 10 15 20 25 30

Eb/N 0 (riB)

Figure 4.10: BER Performance for 802.11a at Gusevl Site3.

100 s _ i i i

10-

10 -2
m

10 -3

10 "4

54 Mbps

36 Mbps

18 Mbps

12 Mbps

i I t I
5 10 15 20 25 30

F-b/N 0 (dB)

Figure 4.11: BER Performance for 802.11a at Hematite4 Site1.

45

4 RESULTS AND DISCUSSION

10 -2
¢0

• " : --,S--- 18 I_

10-' i i .

10 -3 "

io-'
0 5 10 15 20 25 30

Eb/N 0 (dB)

Figure 4.12: BER Performance for 802.11a at Hematite5 Sitel.

100

10 -1
_O

i i i

--8- 1Mbps

! _ 2 Mbps

: _ 5.5 Mbps
11 Mbps

E
i a I

6 8 10 12 14 16 18 20

Eb/No(dB)

Figure 4.13: BER Performance for 802.11b at Gusevl Sitel without a RAKE structure.

46

4 RESULTS AND DISCUSSION

"

0

! ! ! '. -e-- l'Mbps
: _ 2Mbps

i -e- 5.5Mt_
--e- 11Mbm

I I

2 4

1

6 10 12 14 16 18 20

Figure 4.14: BER Performance for 802.11b at Gusevl Site2 without a RAKE structure.

Figure 4.15:

10 o

10 "1
m

10

, n
q ' ! ' ! _-e- 1Mbps

i i _ 5.s Mbps
--_ 11Mbps

I I J

2 4 10 12

Eb/No(dB)

I

BER Performance for 802. llb at Gusev1 Site3 without a RAKE structure.

47

4 RESULTS AND DISCUSSION

10° / ' t

L : : ! I --e- 5.5 Mbps

I I

2 4
10" , , 168 10 12 14 16 1 20

Eb/No(dB}

Figure 4.16: BER Performance for 802.11b at Hematite4 Site1 without a RAKE structure.

10 rJ

10-
1]0

10 -,_

! i ! g ! ' % I tMbps

! -,<- 2Mbps
: i _ 5.5 MbpS

: -'0- 11 MbpS

I I I I6 11B8 10 12 14 1 20

Eb/No(dB)

Figure 4.17: BER Performance for 802.11b at Hematite5 Site1 without a RAKE structure.

48

4 RESULTS AND DISCUSSION

1001

[
10-s0 2 4 6 8 10 112 14 lr6 18 20

Eb/No(clB)

Figure 4.18: BER Performance for 802.11b at Gusevl Site1 with a RAKE receiver.

case. The performance improvement seems to be generally smaller at very large distances.

4.6.5 Performance versus antenna heights

The antenna heights can affect the performance of both 802.11a and b significantly. An

increase in the antenna heights can provide better line-of-sight signals over a rocky terrain

and can increase the received power. However, it can result in more delay spreads as well,

resulting in decreased performance at the receiver. In the case of 802.11a, we can observe

from the PER tables that, of the three sites considered, Gusevl Site3 has the least rms delay

spread at 100 m. Since the received power is too low, the benefit from an increase in the

received power becomes significant since the rms delay spread remains much smaller than

the guard interval. Thus, when the antenna heights are raised, this site shows significant

improvement in performance despite an increase in the rms delay spread value from 0.036 #s

(corresponding to antenna height of 0.5 m) to 0.058 its (corresponding to antenna height of

2.0 m). The results in 802.11b do not show significant improvements with antenna heights as

in 802.11a. This may be because the benefit due to more received power is nearly cancelled

by the loss due to increased delay spreads. Finally, increasing the heights of the antennas

beyond a certain value may be impractical for mobile rovers.

4.6.6 Discussion

There are several interesting observations.

• The received power for 802. llb is always greater than 802. lla. This makes sense since

49

4 RESULTS AND DISCUSSION

Table 4.8: Packet Error Rate Performance at three sites in Gusevl for IEEE 802.11b. The

'-' indicates non-availability of results. The transmit power is 1 W and the antenna heights

are fixed at 1.5 m above the ground.
d

(m)

2O

5O

100

2OO

5O0

1000

Site 1 Site 2 Site 3

Without With Without With Without With

RAKE RAKE RAKE RAKE RAKE RAKE

0.098 0.024 0.115 0.022 0.10 0.043

0.077 0.014 0.082 0.011 0.027 0.008

0.057 0.01 0.032 0.008 0.016 0.005

0.028 0.005 0.51 0.284 0.03 0.006

0.016 0.002 0.53 0.315 0.54 0.234

0.962 0.52 - 1.00 0.682

10° _ GusevlSitel 1

Gusev 1Site3

I _ Hem5Sitel I t

!

10-_ _ i'

10 -2 .

10-3 I

0.5 1.5 2

Antenna Height (m)

Figure 4.19: BER Performance for 802.11a at Gusevl Sitel. The transmit power is 100 #W,

and the distance (d) between the transmitter and the receiver is 100 m.

5O

4 RESULTS AND DISCUSSION

Irl

10 °

10 -1 ..

10 _

10"
0.5

__ GusevlSitel -RAKE
GusevlSite3 - RAKE

Hem5Sitel - RAKE

i
1 1 !5

Antenna Height(m)

Figure 4.20: BER Performance for 802.11b at Gusevl Sitel using a RAKE receiver. The

transmit power is 100 #W, and the distance (d) between the transmitter and the receiver is

100 m.

the transmit frequency for 802.11a is in the 5 GHz band while the transmit frequency
for 802.11b is in the 2.4 GHz band.

• For shorter distances, the rms delay spread for 802.11a seems to be smaller than for

802.11b in the Gusev sites considered. For larger distances, the rms delay spread

for 802.11a increases and becomes similar to or larger than the rms delay spread for

802.11b. The behavior seems to be just the opposite at the Hematite sites.

• The performance of 802.11a and b is affected by received power and the existence

of multipath propagation conditions. When the received power is too small, we can

say that the system is operating in the power limited region. An increase in power

in the power constrained region improves the performance. On the other hand, when

sufficient power is received, the performance of the system can still be severely degraded

due to multipath effects. In this case, we can say that the system is in the multipath

limited (or equivalently bandwidth limited) region. In the multipath limited region,

the performance of the system does not improve with transmission of any additional

power.

• The PER for 802.11a is observed to be smaller than the PER for 802.11b in almost

all cases for large transmit power (1 W). For smaller transmit power, 802.11b seems

to perform better than 802.11a. Note that the received power for 802.11b is larger

than for 802.11a as they use 2.4 GHz and 5 GHz frequency bands respectively. This

51

4 RESULTS AND DISCUSSION

higher received power greatly helps 802. llb in this power limited region. A meaningful

comparison between the two, however, should include the effects of packet sizes, over-

heads, possible improvement due to RAKE in 802.1 lb, and implementation complexity
considerations as well.

52

5 CONCLUSIONS

5 Conclusions

We have continued the effort begun under Year 1 of the grant to begin applying the technol-

ogy developed for propagation modelling on the surface of Mars using commercial software

products and available map data sets. The effort in Year 2 had two major phases: vali-

dation of simulation techniques and IEEE 802.11a/b physical layer modelling. The major

accomplishments for the second year of this research are as follows:

1. Accomplishment 1. Using the Year 1 results regarding antenna coverage patterns,

maximum link distances, effects of surface clutter, and multipath effects, we have

simulated the physical layers of IEEE 802.11a and IEEE 802.11b wireless networking
standards in the Martian environment. The simulations were conducted in MATLAB

using the CommAccess Technologies' mWLAN toolbox. These results will be used

as the basis to begin the study of the behavior of the medium access layer for these

protocols in the simulated Martian environment.

2. Accomplishment 2. We performed a detailed validation study of the results of the

computer-based techniques for estimating the physical layer propagation effects against

those measured in the field. In this validation study, we measured key parameters (RF

signal strength, delay spread, data rates, and packet error rates) for an outdoor IEEE

802.11b wireless network. These measurements were conducted at sites near Tortugas

Mountain and Dripping Springs due their similarity to the Mars surface (free of man-

made objects, little vegetation, mostly flat with some terrain variation and rocks,

etc.). These measurements were compared with expected performance based upon the

DEMs for the sites. We judge the agreement to be very good, especially considering the

wide variation in measurements that can occur by moving the transmitter or receiver

antenna by a small distance.

From this study effort, we conclude that:

• The results of the physical layer simulations for the Martian surface show that success-

ful IEEE 802. l la/b-based communications are possible within a few hundred meters

of the transmit antenna when the transmit power is more than a few milliwatts and

the antenna heights axe fixed at more than 1 meter above the ground. The packet er-

for rate performance of 802.11b without a RAKE receiver seems to be more adversely

affected by the multipath conditions than 802.1 la. Further, the lowest data rate mode

of 802.11a provides the best bit error performance.

• Using higher power in the communications system does not always help the perfor-

mance of the system. This result is known for terrestrial environments where vegeta-

tion and atmospheric phenomena are important. It is also true in sparse environments

with negligible atmospheric attenuation as well.

• Transmission power and antenna height can be traded to a certain extent. The desired

link Quality of Service and data rate may be more of a driver in link design and

performance than transmission power and antenna height.

53

5 CONCLUSIONS

• Use of a RAKE-type of receiver can significantly improve performance with 802.11b

protocols.

54

6 RECOMMENDATIONS

6 Recommendations

Given our research results, we propose the following recommendations:

. Continue investigation of the technology to employ the MATLAB physical layer sim-

ulations with the OPNET MAC layer simulations. The incorporation of MATLAB

with OPNET to produce a cosimulation is proving to be a difficult but necessary task.

However, recent efforts have shown that there appears to be a path to resolving the

compatibility issues. Once these issues are resolved, then further progress in seeing the

effects of the physical channel on MAC layer performance will follow.

. Investigate MAC layer improvements to make outdoor wireless communications more

reliable. The 802.11 protocol suite has a rich set of features that can be investigated for

how they can be improved to make the communications more reliable. Most of these

features were initially designed for indoor wireless use and not the outdoor environment.

Now that we can predict the propagation effects, both link budget and multipath, with

a degree of reliability, we have the means to investigate which protocol features are

most important for the 802.11 wireless environment.

. Investigate the potential for other protocol families to be used in the planetary surface

environment. For example, it is expected that the European Space Agency will con-

sider using the 802.16/large subcarrier number OFDM as the baseline protocol surface

communications in their mission studies. With the technology baseline being developed

here, we can assess if this protocol suite would make sense when the various propa-

gation factors are considered. The performance can then be benchmarked against the

802.11 simulations for evaluation purposes.

55

REFERENCES

References

[1]

[2]

"NASA Space Communications Project," Mar. 2004. <http://scp.grc.nasa.gov/

portfolio/pn/index, html>.

J. Andersen, T. Rappaport, and S. Yoshida, "Propagation Measurements and Model

for Wireless Communications Channels," IEEE Communications Mag., pp. 42-49, Jan.
1_0.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

rlO1
I. J

[11]

P. DeLeon and S. Horan, "Effective utilization of commercial wireless networking tech-

nology in planetary environments," Tech. Rep. NMSU-ECE-04-003, New Mexico State

University, Las Cruces, NM, March 2004.

D. Hansen, M. Sue, C. Ho, M. Connally, T. Peng, R. Cesarone, and W. Horne, "Fre-

quency Bands for Mars In-Situ Communications," Proc. IEEE Aerospace Conf., 2001.

C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks Architectures and Proto-

co/s. Upper Saddle River, N J: Pearson Education, Inc., 2004. Chap. 2.

IEEE Std 802.11b-1999 Supplement to ANSI/IEEE Std 802.11, 1999 Edition - Informa-

tion technology Telecommunications and information exchange between systems Local

and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physi-

cal Layer Eztension in the 2.4 GHz Band. New York, NY: Institute of Electrical and

Electronics Engineers, 1999.

C. Steger, P. Radosavljevic, and J. P. Frantz, "Performance of IEEE 802.11b wireless

LAN in an emulated mobile channel," in Proc. IEEE VTC, (Korea), April 2003.

M. V. Clark, K. K. Leung, B. McNair, and Z. Kostic, "Outdoor IEEE 802.11 cellular

networks: Radio link performance," in Proc. IEEE ICC, 2002.

IEEE Std 802.11a-1999 (ISO/IEC 8802-11:1999/Amd 1:2000(E)) Information tech-

nology - Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications - Amendment 1: High-

speed Physical Layer in the 5 GHz Band. New York, NY: Institute of Electrical and

Electronics Engineers, 1999.

D. K. Borah, R. Jana, and A. Stamoulis, "Performance evaluation of IEEE 802.11a

wireless LANs in the presence of ultra-wideband interference," in Proc. IEEE Wireless

Communications and Networking Conf., WCNC, (New Orleans), March 2003.

P. K. A. N. A. Doufexi, S. Armour and D. Bull, "A Comparison of HIPERLAN/2 and

IEEE 802.11a," IEEE Commun. Magazine, vol. 40, pp. 172 - 180, May 2002.

56

REFERENCES

[12] V. Chukkala, P. D. Leon, S. Horan, and V. Velusamy, "Modeling the radio frequency

environment of mars for future wireless, networked rovers and sensor webs," in Proc.

IEEE Aerospa_ Conference, (Big Sky, MT), 2004.

[13] B. Pearson, "A Condensed Review of Spread Spectrum Techniques for ISM Band Sys-

tems." Intersil Corporation, May 2000. Application Note 9820.

r141 ,,'_'ITT A 7_T["*l .,,_ Design Guide." *_:'_-* _^___1^._ _..

[15] "ATDI," Mar. 2004. <http://_.atdi. corn>.

[16] NASA, "NASA Rovers Slated To Examine Two Intriguing Sites On Mars." NASA

News Release 03-137, Apr. 2003. <http://_-_. nasa. gov/home/hqnews/2003/mar/
HP_news_03137. html >.

[17] A. Rayl, "NASA Announces Mars Exploration Rovers' Landing Sites," Apr.

2003. <http://www.planetary. org/html/news/articlearchive/headlines/2003/

nasa_mer_sites, htm>.

[18] C. Ho, S. Slobin, M. Sue, and E. Njoku, "Mars Background Noise Temperatures Re-

ceived by Spacecraft Antennas," The Interplanetary Network Progress Report, vol. 42-

149, May 2002.

[19] P. McKenna. Private communication, Jul. 2003.

[20] OPNET, Wireless Module User Guide for Modeler.

[21] OPNET, Tutorial: Basic Processes.

[22] OPNET, Modeling Concepts, ch. External System Domain.

[23] Mathworks, External Interfaces. Matlab user guide.

[24] V. Dham, "Link establishment in ad hoc networks using smart antennas," Master's

thesis, Virginia Polytechnic Institute and State University, January 2003.

[25] "WindowsNetworking," Aug. 2004. <http://windowsnetworking. corn/articles

tutorials/trouble/>.

[26] "Ad-Aware," Aug. 2004. <http://www. lavasoft, corn/>.

[27] "Intel," Aug. 2004.
CS-006205. htm>.

[28]

<http://support.intel.com/support/wireless/wlan/sb/

"Iper_users," Sep. 2004. <http://archive.ncsa.uiuc.edu/lists/iperf-users/

may03/msg00000.html>.

[29] "BVS," Feb. 2004. <http://www.bvsystems.com/>.

57

REFERENCES

[30] "Atheros," Aug. 2004. <http://atheros.com/pt/papers.html>.

[31] "EIRP Limitations for 802.11 WLANs," Oct. 2004. <http://_r_. wi-fiplanet, corn/

tutorials/article, php/1428941>.

[32] "CommAccess," Jan. 2004. <http://_. commaccess, com>.

[33] T. H. Lee, H. Samavati, and H. R. Rategh, "5-GHz CMOS Wireless LANs," IEEE

Trans. on Microwave Theory and Techniques, vol. 50, pp. 268-279, Jan. 2002.

[34] D. M. Pozar, Microwave and RF Wireless Systems. New York: John Wiley _z Sons,
2001.

58

A RESEARCH PERSONNEL

A Research Personnel

Principal Investigators

Dr. Phillip L. DeLeon
Associate Professor

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-3771

pdeleon@nmsu, edu

Dr. Stephen Horan
Professor

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-4856

shoran_rnmsu, edu

Co-Investigators

Dr. Deva Borah

Assistant Professor

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-3357
dborahOnmsu, edu

Dr. Raphael Lyman
Assistant Professor

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-3811

rlyman@nmsu, edu

Senior Personnel

Mr. Anirudh Daga

Research Assistant

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

59

A RESEARCH PERSONNEL

(505) 646-1911
anirudh_nmsu, edu

Mr. Robert Hull

Technical Support

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-1556
rhull@nmsu, edu

Mr. Gaylon Lovelace
Research Assistant

New Mexico State University

Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico 88003-8001

(505) 646-1911

glovelac@nmsu, edu

6O

B PUBLICATIONS RESULTING FROM RESEARCH

B Publications Resulting from Research

The following publications resulted from this research effort. Many of the results of these

theses have been included in this report.

V. Chukkala, P. DeLeon, S. Horan, and V. Velusamy, "Radio Frequency Channel Modeling

for Proximity Networks on the Martian Surface," International Journal of Computer and

Telecommunications, in press, 2005.

V. Chukkula, P. DeLeon, S. Horan, and V. Velusamy, "Modeling the Radio Frequency En-

vironment of Mars for Future Wireless, Networked Rovers and Sensor Webs," in Proc. 2003

IEEE Aerospace Conf., Big Sky, MT., March 2004.

D. Borah, A. Daga, G. Lovelace and P. DeLeon, Performance Evaluation of the IEEE 802.11a

and b WLAN Physical Layer on the Martian Surface, in Proc. 2005 IEEE Aerospace Conf.,

Big Sky, MT., March 2005.

V. Chukkula and P. DeLeon, Simulation and Analysis of the Multipath Environment of

Mars, in Proc. 2005 IEEE Aerospace Conf., Big Sky, MT., March 2005.

61

C STEPS FOR GENERATING SIMULATIONS

C Steps for Generating Simulations

C.1 RF Coverage Simulations using HerTZ Mapper

Initial Setup

To create a project in HerTZ Mapper you must have three files available

1..geo: This file contains the topographic information

2..img: This is a image file corresponding to the topographic map

3..pal: This file contains the palette information of the image

Creating a Project

From the Windows Start menu, navigate to the ATDI software selection within Programs,

and choose HerTZ Mapper. Once the package has opened, click on the image on the middle

of the screen. From the File menu, you may now choose Create New File Server to create

a new project, or Coverage and profile analysis to open an existing one. The procedure is

explained below. The File server window is shown in Fig. C.1.

• Enter a file name for project or select an existing.svr file

• Double-click on Digital Elevation Model, then on Add, and select a .geo file

• Proceed the same way for the Primary Image, and add first the .img file associated to

the DEM (then the .pal file)

• "click Open Coverage" &: Profile, and choose OK

Transmitter setup

Once you have the files opened in HerTZ Mapper you can click on the DEM or image and

select "Add site" to place a transmitter. You can also specify the latitude and longitude

of the location to exactly place a Tx at desired location. When you select Add site a Tx

parameter window is displayed as one shown in Fig. C.2. The user has to enter all the Tx

parameters such as frequency, power and antenna height. Once you choose OK a red square

is displayed on DEM and image with a letter on it as shown in Fig. C.3. This red square

shows the location of transmitter.

62

C STEPS FOR GENERATING SIMULATIONS

i - • Digi_TeaainXodet
i _ C:_ocume_ andSeain_a__p_, Docume_le_.

C:M)oouments and Setlir_'_r_ cq)M4_ Dooumer_'_le_e.

- @ se_,,_l,,Jg_
Oa_L.

-OOu_
• ,_,_._

- • S,b,_F_

I< >

Open Coverage& F_oiiles

F Open _ Ca,e

!-"Open Meaz_ement

Tk_

Sete__ lil_ _ _th U_ p,oiedb_doubled_J_ inU__
r._eg_ Am_numpmie_c_ntamap_ imacj_F_ C._,_ _
p,olii_,aDTMi_nmuied.

I I

Figure C.I: HerTZ Mapper file server window.

63

C STEPS FOR GENERATING SIMULATIONS

TxH4me:

Ommge

[_+'0+"...... _dB--m.... 'v+i Fm_l IMHz_: i2"4_+i_ +

6aimldBil: !am HeigKl(m) +I+00
+...........

_I+))ao

EIFIP [w]: :1.0000 £,e_ Index: _

+i +..........
I ok]

Figure C.2: HerTZ Mapper station parameters.

iii__.....

Figure C.3: HerTZ Mapper opening window.

64

C STEPS FOR GENERATING SIMULATIONS

Engineering Parameters

Rx iTx Covera_ I

Maxilun calculalioncli_lncehi: 116000

Modois

I'- Build, on+ Re_nel

_- Ree Space

i_ E_emal DLL- _ to _ andto c_r_59uf_e

ii iiiiiii iii ii I

Figure C.4: HerTZ Mapper model selection window.

ilir
..... rl •

° Litll ' ilml

Faa Imthi_, ti_ ilmmm _ gl_l

:" li'Ii 51'i'-3.ira. llilll: I

r - ¢m_

i

ii

Vilil, 6,11rd _"_"i dlmlilmli

.... Ill
Zdi Ii

ii:41
• di _ Oelll ha_llililn I

i I #i lh: il : _i li

i

i/

Tao,impmHmSm

Figure C.5: HerTZ Mapper ITM parameter window.

65

C STEPS FOR GENERATING SIMULATIONS

Propagation Model Setup

To select a propagation model select Parameters form "File Menu" then "Engineering pa-

rameters" and then "Coverage". Once you click on the coverage a w:mdow is selected with

all the propagation models as shown in Fig. C.4. First you have to select "External dll"

and then "ITM122". Once you click OK the ITM parameter window is displayed as shown

in Fig. C.5. Once you enter all the required values you can close the window to finish the

propagation model setup=

Figure C.6: HerTZ Mapper opening window.

Coverage Calculation and Overlay

First click on the "Transmitter" and then select the Transmitter and then select "coverage"

to run a coverage. Clicking on the Coverage option will instruct the software to simulate

the site you clicked on, using the parameters and propagation model you have previously set

up. The computer performs a simulation. Once finished, you axe prompted to save the field

strength file. Click "Save" for this file box (it automatically suggests a name). Minimize or

close the field strength result window and click on the map. The field strength file can now

be displayed in full transparency on top of the image by choosing the "Overlay FLD" option

(in the popup box), and selecting the appropriate field file. The color of the field denotes

a discrete band of values of field strength. To see the actual value of field, move the mouse

cursor over the appropriate area and read the value from the information bar at the bottom

of the screen. It appears in the dBV/m bracket. You can modify the colors and field levels

in the Parameters/Legend box. Fig. C.6 shows the coverage overlayed on the DEM.

66

C STEPS FOR GENERATING SIMULATIONS

C.2 Power Delay Profile Simulations using ICS Telecom

Initial setup

As mentioned for HerTZ Mapper the ICS Telecom also needs three files (.geo,.img, and .pal)

to create a project.

Creating a Project

From the Windows Start menu, navigate to the ATDI software selection within Programs,

and choose ICS Telecom. Once the package has opened, From the File menu choose project

Manager to create a new project, or to open an e.xisting one.

Once the project Manager window opened click on the 3 dots in front of the DEM, image,

and pal options to select the .geo, .img, and .pal file locations. Once all 3 files are selected

click save as to create the project file with extension .PJT.

Transmitter setup

Select the point mode from the tool box. Now click on the DEM and then select add Tx/Rx

from the popup menu. A parameter window will be displayed. Enter the Tx parameters

leaving out the options not applicable for the situation. Once you click OK a square with a

letter on it is displayed on DEM to represent the transmitter position.

Propagation Model setup

Select File menu Coverage/Network Calculation/Tx/Rx FS calculation. A window is dis-

played with Rx antenna height field. Now click on more to get a Advanced coverage pa-

rameters window. Click on Model to get Propagation models window. The following three

selection have to be made in this window.

In Models box click on 3 dots to select the ITM (tuned dll) from the Models directory

within ICS. In climate box enter the corresponding Mars land and sea radius in Km and

then click on the 3 dots to select the k factor as 1. In Reflection box enter the reflectance

value and then select 3d coverage only option.

PDP calculation

1. Set on the terrain the transmitter network up(Add Tx/Rx option of the point mode

left click popup menu).

2. Proceed to the coverage calculation of the network(File menu Coverage/Network cal-

culation/Tx/Rx Fs coverage).

3. Display the composite coverage(File Menu Coverage/Network Analysis/Composite cov-

erage display) and keep the coverage overlaid on the terrain. Keep the Point mode

activated.

67

C STEPS FOR GENERATING SIMULATIONS

4. Click over the site of the Virtual receiver In the popup menu, choose option Multipath.

5. In the input box,enter the icon number of the transmitter and the receiver antenna

height(in meters).

The simulation is run and will calculate the reflected field strength and the ToA emanat-

ing from the designated transmitter to the receiver point touched by the cursor. The result

is shown as a graph displayed in the Muitipath box. The blue color represents the reflected

ray, and the red color indicates the direct ray. In the status bar, the following information

regarding the position of the cursor on the graph,is given:

ToA value in #s

Reception threshold(FSR) in dB#V/m
Altitude in meters

The print button opens the Print setup box to print the graph. The close button closes
the Multipath box.

68

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

D Visualization of Data Acquired with the Yellow-
Jacket

D.1 Log File Transfer

The YellowJacket will save measurement data on the iPAQ in a single file named with

the .Y J3 extension. The default name is log.yj3. In order to save multiple sessions or

measurements, be sure to rename the file and start again, as the YJ will simply append to

the existing log file.

The only way to transfer data out of the YJ is to use the infrared port on the top of the

iPAQ. This must connect to a corresponding infrared port on a Windows-based PC. The

software used for the transfer is Microsoft Active Sync.

1. On the PC, start Microsoft Active Sync, then point the YJ at the ir port of the PC.

On the Y J, use the main menu screen to select System, then Communications, then
Connect via]:Ft.

F_ileV__ew Tools _l-=lelp

N
Details

Information Type Status

Figure D.7: Snapshot of ActiveSync.

69

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

2. When the units "connect", Active Sync will make a noise and ask what type of part-

nership is desired. This should be a guest, connection, not a synched connection.

3. Vv'hile Active Sync should be able to allow the user to browse the files on the remote

unit, it usually crashes. Try the normal "my computer" method to locate the remote

unit and look for the log.yj3 files in the home folder. Copy the file(s) to the desktop

or appropriate folder.

4. Now that the file has been copied (with translations from PDA to desktop format) to

the PC, it must be translated from YJ format to columnar. Use Berkeley Varitronics

Systems (BVS) Chameleon software for this.

:_czse

_e m _e

3_,Lv_ _i_e

_ DATA: F-wkb

kMC _dd_

Al_/$_a lDataJ_ Da_a
C_S

i - i

i << i

i_" RSSI

_EP

' _ Ii f-_i_l._r_ _:_ ,i

_. : : ;e COI_ERT DATA

11:38:47 AM

Figure D.8: Snapshot of Chameleon.

5. In Chameleon, follow the steps numbered to the left of the Chameleon screen:

(a) Browse for the input file. The default screen will search for the .yj3 extension

(extensions are not always visible in Windows machines) and the file type: BVS

YellowJacket III Log Files.

(b) Browse for the output file (create a file name) with the default extension .out

(c) Select Output Format: MS Excel; select Field Delimiter: Tab

(d) Choose the data source from the "Field Selection Available." The YJ stores the

data from the screens in these categories. The most useful are the AP/Sta Data

(Access Point station data) and GPS.

7O

?

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

(e) Once a source is selected (by placing the selection is the Selected box using the

arrows), the DATA: Fields become available. Here, the individual selections axe

made and will include all sequential samples of the various measurements. Al-

ways select a Channel and/or SSID to be sure which station is being measured.

The Multipath Data are the first twenty two measurements from the Correlation

screen, from which the Delay Spread can be derived.

(f) Use Microsoft Excel to view the Chameleon XXX.out file and put the data in

spreadsheet format. The Excel wizard will assist in translating the layout. The

file can be saved as XXX.xls and opened in MATLAB (see next section regarding

out Yellow Jacket Toolbox User's Guide). For viewing in Excel, some adjustment

of column width will be required.

Figure D.9: Snapshot of Excel.

D.2 MATLAB Yellow Jacket Toolbox User's Guide

Open MATLAB by double clicking on the MATLAB icon as in Fig. D. 10.

As in Fig. fig:command, type at command prompt

>> YJ_program

71

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

Figure D.10: Snapshot of Windows desktop.

Select YellowJacket data folder by date and antenna height. Then choose which Excel

file by distance from AP. See Fig. D.12.

Now the program is running as in Fig. D.13. NOTE: To view Iperf data for location

1. Select file Iperf

72

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

To get s_..ed, select "IUkTLAB Belp" fEmm _ Help l_nu.

>> Y.1...pzog_amj

<: > < +)+

Figure D.11: MATLAB's command window.

73

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

-- "" _-_1 i _ is a Ci_zomm tice_ foe l_ucclonal _e onlT.

5t_t _e_eI_ch Ind cIEc_ed use i._ pzo_Lbi_d.

"i! UsLu_ TuoJ.b_ Path Cache. T_pe _neip coo_0mc..pa_a cache _ for mmze Xnt

iI _ _ in nonexistent og not a dlEec_o_: c: _I_ _ sec_L_

i[_]hme is mmI_e_iste_t o¢ not a (U.zeCl;OL_: c:_.doc_ment_ stud setr.._Jv

I To get st,_ed, select "I_TL_ _lp" froa the Help mmu.

PP =

19.0004

JT-ZS _

_.38-5 lm s_r':

>

Figure D.12: Yellow Jacket toolbox program running.

74

TY

D VISUALIZATION OF DATA ACQUIRED WITH THE YELLOWJACKET

Fm_ Pbt_ _

File_me SSlO

16 samples

.-'i" A-- .L - : "'-

.-'"" i: _ --'"_ .-'":'- ".4. ""._ "".

-" ; >:,v',_ ! "-. i "- _-. "!

.;] i { "-.: ", : ",
--'_ ; _ _ i ¢_" . _ "-: ",

J.-- ft _ i _ / ,i_ '."- :'- "': J

.- _,!. _. .1.. _,,. i-. "-i'_]',_t_I__ , ,I "-4 -..: "'. :

100 4

Relatrmtime 0 -2 Chq_s

Dei_ Spm,_l Me,era Dek_ Speeed Std Dev

Figure D.13: Yellow Jacket toolbox program running.

75

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

E IEEE 802.11b Field Measurement Test Procedure

E.1 Introduction - Free Field and Simple Reflector Tests

Purpose: To verify IEEE 802.11b WLAN hardware and RF performance. We intend to

discover the free field distance that can support data transfer between commercial access

points (AP) and standard laptop computer transceivers (built in). In addition, a simple

RAD_ __,ec_ion configuration will be measured to octen,,me tile eKcct oF mmtlp_tn slgnms-".....

on the performance of an 802.11b system.

E.2 Equipment

D-Link DI-524 wireless router / access point (AP)

SSID = "spirit" or "opportunity"

Apple Macintosh PowerBook G4 laptop

SSID = "isidis" or "dsp"

Dell Latitude D600 laptop

SSID = "gusev"

Yellow Jacket Plus (with GPS) - also called "YJ"

802.11b W-LAN Analysis System

Berkeley Varitronics Systems

s/n 024127

Cushcraft $24012P directional panel antenna(s)

Garmin rinol20 FRS radios / GPS

Garmin eTrex GPS receiver

APC SmartUPS 700

uninterruptiblepower supply (batterypowered AC source)

and / or
Xantrex xPower 600

DC-AC power source

software:

"Iperf" network testing utility

76

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

E.3

Setup

Procedure

1. Connect equipment to power source as required:

laptop "isidis"

D-Link AP

YJ charger cradle, if needed

2. Establish appropriate connections to AP:

ethernet cable between Iperf "client" and AP

RF link between Iperf "server" and AP

open "SSH Secure Shell Client" window on server to remotely control client: password

as listed

run Iperf as client, -c

3. Verify YJ is acquiring AP by channel and SSID

under YJ options, clear log file and then enable logging

Iperf data test

1. Setup Iperf server and client UDP command lines:

(server) iperf-s-u -i 1 xxxlog.txt

where xxx is log file descriptor (distance, elevation) such as "s40-1m"

(client) iperf-c 10.0.0.xx-u-b 7.35m-t 120

where .xx is the wireless IP address of the server computer

determine clean data rate and substitute for 7.35m in above command line

2. While monitoring distance on the GPS, move away from the AP, watching the data

quality on Ipeff.

3. Take data at 20 meter increments to limit of system function and data quality. See

Figure E.14 for positions.

4. Rename the log file on the Y J, labelling each measurement station

77

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

Figure E.14: Wireless node positions at stadium parking lot.

Reflection test

Establish the geometric layout depicted in Figure E.15.

1. Verify wireless direct link between server and client.

2. With YJ at far comer of layout triangle, look for double correlation peak by manipu-

lating orientation or antenna angles.

3. Name the log file on the YJ

4. With double peak showing on Y J, attempt Iperf data run and log results.

E.4 Introduction - Multipath Tests

Purpose: In a terrestrial environment that features massive rock structures capable of causing

multipath reflections, determine the signal characteristics and data link effects due to the
terrain.

E.5 Equipment

D-Link model DI-524 wireless router / access point (AP)
SSID = "spirit" or "opportunity"

78

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

Reflector

Reflected Path

Access Point

Direct Path

Yellow jacket

Figure E.15: Outdoor geometry.

79

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

Linksys Bridge model WETll

SSID = "opportunity" (WLAN AP)

Apple Macintosh PowerBook G4 laptop
SSID = "isidis"

Dell Latitude D600 laptop

SSID = "gusev"

Yellow Jacket Plus (with GPS) - also called 'q(J"

802.11b W-LAN Analysis System

Berkeley Varitronics Systems

s/n 024127

Cushcraft $24012P directional panel antenna(s)

Garmin rinol20 FRS radios / GPS
Garmin eTrex GPS receiver

APC SmartUPS 700

uninterruptible power supply (battery powered AC source)

Xantrex xPower 600

DC-AC power source

software:

"Iperf" network testing utility

"Ping" network connection utility

E.6 Procedure

Setup

1. Connect equipment to power source as required:

laptop "isidis"

D-Link AP

YJ charger cradle, if needed

2. Verify YJ is acquiring AP by channel and SSID

under YJ options, clear log file and then enable logging

8O

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

Wireless data test

1. Establish a wireless connection with omnidirectional antennas, using Ping as an exam-

ple data test (see Figure E.16).

2. Raise antenna to two meter height and evaluate data improvement, if any.

3. For sufficient signal using 50mW AP, connect directional antenna(s) and retest.

4. Find optimal orientation to establish multipath peaks on YJ display, using rock face

as reflector. Mark RX spot as GPS waypoint.

5. Name log file on YJ.

Network Utility

J, Info Netstat AppleTalk Ping Lookup Traceroute Whois Finger Port Scan _-

Please enter the network address to ping

10.0.0.10

f,-n_

_,, Send an unlimited number of pings

Send only S pings

{ex. 10.0.2.1 or www.domain.com)

(Ping)

Ping has started ...

PING 10.0.0.10 (10.0.0.10): 56 data bytes
64 bytes from 10.0.0.10:icmp_seq=0 tti=128 time=2.082 ms
64 bytes from 10.0.0.10: icmp_seq=l tt1=128 time=1.983 ms
64 bytes from 10.0.0.10:icmp_seq--2 tt1=128 time---,2.094 ms
64 bytes from 10.0.0.10:icmp_seq--3 tti=128 time=1.861 ms
64 bytes from 10,0.0.10:icmp_seq=4 tt1=128 time=1.921 ms

-- 10.0.0.10 ping statistics-
: 5 packets transmitted, 5 packets received, 0% packet loss

round-hip mirdavg/rnax = 1.861/t.988/2.094 ms

/

Figure E.16: Sample output from ping test.

Iperf Multipath test

1. Setup UPS power to run laptop and Bridge at RX location.

81

E IEEE 802.11B FIELD MEASUREMENT TEST PROCEDURE

2. Establish appropriate connections to AP:

ethernet cable between Iperf "client" and AP at TX location.

RF link between Iperf "server" and AP using Linksys Bridge as intermediate element

(to enable use of directional antenna) at RX location.

3. Carefully, without moving RX antenna position, connect antenna to Bridge in place of
Yellow Jacket.

4. Run Ping to verify wireless link.

5. Setup Iperf server and client UDP command lines:

(server) iperf-s-u-i 1 xxxlog.txt

whore _ is log file descriptor.

(client) iperf-c 20.0.O.xx-u -b 5.5m-t 60

where .xx is the wireless IP address of the server computer

6. Perform sufficient Iperf runs to establish link behavior under multipath conditions.

82

F CODE LISTINGS

1

2

3

4

5

6

7

8

9

10

11

12

F Code Listings

This Appendix lists the major MATLAB code files used in the analysis and simulation work.

Yellow Jacket Code

ask_npts.m

function answer = ask_npts(handles)

default = num2str (length (handles. current_data)*. 1) ;

prompt = { ['How many points (' num2str (length (handles. current_data))

dlg_title = 'Moving Average filter';

hum_lines= 1 ;

def = {default}

answer = str2num (char (inputdlg (prompt

dlg_title, hUm_lines, def))) ;

if isempty (answer)

end

answer = .l*length(handles.current,data);

'):']};

BW_filter.m

function BW = BW_filter(BWO)

for i = l:length(BWO)

end

if BWO(i) < 7.5

BW(i) = BWO(i) ;

end

cell_find.m

function [labels, index, in_ref] = cell_find(s, char_array)

_This program find a string in a cell array and return the index

_This is not correct

ZThe Data Rate has a extra tab charactar

Z

83

F CODE LISTINGS

9

10

11

12

13

14
15

16

17

18

19

20

21

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49
5O

51

52

53

[R C] = size(s); Y.define search criteria

[Rc Cc] = size(char_array);

index = []; Y.Set intial index

in_tel = [] ;

ind_end = 1 ;

for j = l:Cc

for i = I:C

x = double(char(s{l,i}));

if x(1) == 9

labels{i} = {char(x(2:length(x)))};

else

labels{i} = s{l,i};

end

%If desired string of given headers

if length(char(labels{i})) == length(char(char_array(j)))

a char(labels{i}) == char(char_array(j))

%If consecutive headers are the same

if i-=l & length(char(labels{i})) == length(char(labels{i-l})) ...

& char(labels{i}) == char(labels{i-l})

if ind_end == I; %describe when consecutive headers began

ind_end = O;

initial = i-l;

len = length(in_ref);

end

else

in_ref{length(in_ref)+l} = [{i} labels{i}];

end

index(length(index)+l) = i;

elseif i >3 a length(char(labels{i-l})) == length(char(labels{i-2})) ...

& char(labels{i-l}) == char(labels{i-2})

if ind_end == 0

in_ref{len} = [{initial} {i-l} labels{i-l}];

ind_end = I;

end

end

84

F CODE LISTINGS

54

55

56

57

end,.char_array search

end_ae ader search

cellarray.m

1

2

3

4

5

6
7

function names = cellarray(ssid)

len = length(ssid) ;

for i = l:len

names{i,l} = char(ssid{i}{l}{l});

end

col_find.m

1 function handles = col_find(handles)

2 _Called from YJ_workl on line 96

3 _This program read the colums specified in handles.ref

4

5 row = [2 length(handles.data)];Y_ength of data

6 _Columns

7 _SSID

8 temp = handles.ref{l}{l};

9 handles.col_ssid = temp;

10 Y_4ultipath start

Ii temp = handles.ref{2}(1);

12 handles.col_in = temp{l}(1);

13 _Multipath finish

14 temp = handles.ref{2}(2);

15 handles.col_fn = temp{l}(1);

16 Y_ata Rate

17 temp = handles.ref{3}{l};

18 handles.DR = data_fetch(row,temp,handles.data);

19 _KSSI

20 temp = handles.ref{4}{l};

21 handles.rssi = data_fetch(row,temp,handles.data);

22

23

24 if length(handles.ref) > 4

85

F CODE LISTINGS

25 _Latitude

26 temp = handles.ref{5}{l};

27 handles.latitude = data_fetch(row,temp,handles.data);

28 end

29 if length(handles.ref) > 5

30 7_ongitude

31 temp = handles.ref{6}{l};

32 handles.longitude = data_fetch(row,temp,handies.data);

33 end

34 if length(handles.ref) > 6

35 Y_Ititude

36 temp = handles.ref{7}{l};

37 handles.Altitude = data_fetch(row,temp,handles.data);

38 end

data_fetch.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

function d = data_fetch(row,col,data)

[r c] = size(col);

Y,This is for Multiple column data

if c >i

for i = row(1):row(2)

for j = coi(I):coi(2)

d(i-row(1)+l,j) = str2num(char(data{i,j}));

end

end

else _this is for single column data

if isempty(strRnum(char(data{row(1),col})))

end

for i = row(1):row(2)

y = char(data{i,col});

d(i-row(1)+l) = str2num(y(l:5));

end

else

for i = row(1):row(2)

y = char(data{i,col});

d(i-row(1)+l) = str2num(y);

end

end

86

F CODE LISTINGS

27

delay_spread.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

function d = delay_spread(MP)

N = 22;

T = 1/22000000;

n=[O:N-l];

[numrows,numcols] = size(MP);

d = zeros(numrows,l);

for i = l:numrows

m = sum(MP(i,3:24).*n)/sum(MP(i,3:24));

d(i) = T*sqrt(sum(MP(i,3:24).*((n-m).'2))/sum(MP(i,3:24)));

end

d = d*leg;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

edit _external_plot. m

load handles

PD = handles.MP(: ,4:25) ;

[r c] = size(PD)

start = l;

stop = r;

figure (23) ;

Specify Range for plot

start = 2000

X stop = 2500

% Plot Power Delay Profile

X = -2:5/c:3-(4/c);

Y = start:stop;

mesh(X,Y,PD(Y,:))

ylabel('Relative Time');

xlabel('Chips');

87

F CODE LISTINGS

21 zlabel('Relative Correlation') ;

22 title('When pointed at La Cueva');

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

31

32

for_data.m

" _ lab = "^- _'_t'_

Y.Format data

% clear;clc;close all

% %file name of data

% filename = 'log629_ap_mtlb.out';

Y.disp (filename)

Y.s = importdata(filename, '\t');

Y.disp(' ')

clc;

rows = length(s);

%tab = s{1}(i,8);

load tab_char %tab character

for j = 1:rows

index = find(char(s{j}) == tab); Y.find tab character

len = length(index);

temp= s{j}(l:index(1)-l); %save data string (initial)

lab{j,l} = cellstr(temp(1,:)); %load data string (initial)

end

for i = l:len-1

temp = s{j}(index(i)+l:index(i+l)-l);

lab{j,i+l} = cellstr(temp);
end

lab{j,i+2} = cellstr(s{j}(index(i+l):length(s{j}))); %final

generaliperf.m

1 function iperf = general_iperf(file,path)

88

F CODE LISTINGS

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

X

7. SPACE DELIMITER

7.

7. USE get_iperf_data.m if possible

7. The program reads data files taken by iperf

7. and then literally copied to an Excel spreadsheat

7. Process :

7. I) open text file of iperf data

7. 2) Ctl+a

7. 3) Ctl+c

7. 4) In Excel spreadsheet ctl+v

7. 5) File Save

7. Now run this program and the iperf data will be stored as followed

7. all in the iperf handle, iperf. :

7. Time in seconds (iperf.time)

7. Transfer in KBytes (iperf.transfer)

7. Bandwidth in Mbit/sec (iperf.BW)

7. Packet Error Rate in percent (iperf .PER

7.

7.

not_all = O; 7.condition if all data if imported properly

7. [file path] = uigetfile(' .xls') ;

7. import data

data = importdata([path file]) ;

7.Space delimeter

sp_del = double(char(' ')) ;

7.condition varables

garbage = 7;gar = O;

7J_ain loop

for i = 8:length(data)

7.If data is not empty

if "isempty (data{i})

Y_ead only data lines

if char(data{i}(1)) == char(' [') _ char(data{i}(2)) ~= char('

sp_ind = find(data{i} _- sp_del);

sp_ind = [0 sp_ind] ;

') 7.data line

7.Save delimeter col location

for k = l:length(sp_ind)

if -(k == 4 & i < 17)

if sp_ind(k+l)-sp_ind(k) > 1

start = sp_ind(k)+l;

7.Test for multiple spaces

89

F CODE LISTINGS

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

stop = sp_ind(k+l)-l;

row_data{i-garbage,k-gar} = {data{i} (start:stop)};
if (k == 3 & i < 18) _ (k == 2 _ i >= 18)

imp = double (char (row_data{i-garbage, k-gar})) ;

ind = find(trap == 45);

if "isempty (ind)

row_data{i-garbage,k-gar} = {char(tmp(l:ind-l))};

end

end

else

gar = Ear +i;
end

else

gar = gar +1;
end

72ER column

if (k+2) > length(sp_ind)

start = sp_ind(k+l)+2;

stop = length(data{i})-2;

if start > length(data{i}(:))

if -isempty(char(row_data{i-garbage,ll}))

per_tmp = [char(row_data{i-garbage,lO}) char(row_data{i-garbage

row_data{i-garbage,k-gar+l} = {num2str(eval(per_tmp)*lO0)};

else

row_data{i-garbage} = {''};

end

elseif data{i}(start) == '-' _ (i-garbage) == 1

row_data{i-garbage,k-gar+l} = {'-1'};

else

row_data{i-garbage, k-gar+l} = {data{i} (start: stop) };

end

gar = O;
break

endY_nd of PER column

endY2md for loop or the row

else 7.If row contain labels

garbage = garbage + i;

end

Y.Ifstatement for last row of data (PER column)

if (i == length(data))

row data{i-garbage, 12} = row_data{i-garbage, 11};

9O

F CODE LISTINGS

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
108

109

110

111

112

113

114

115

116
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

end

else

not_all = I;

end_ End of is data cell row empty

endY, End of row

7, Y,lf there is a WARNING: in the last row of row_data disp and delete

if not_all == 0 & "..... " _ " _ _ _±_ngth tchar _row_dat axi-gaxbage, z}y y ±ength k" waru,iN_ :')

j = i;

str = [];

while -isempty (row_data{i-gaLrbage,j})

str = [str char(row_data{i-garbage,j}) ' '];

row_data{i-garbage,j} = {' '};

j = j+l

if length(row_data) > j

break

end

end

disp (str) ;

end

Z\\\\\\\\\\\\\\

Y,Time in seconds

iperf,time = abs ((iperf_cell_array(row_data,2)));

Y,Transfer in KBytes

iperf, transfer = iperf_cell_array(row_data, 4) ;

Y_andwidth in Mbit/sec

iperf.BW = iperf_cell_array(row_data,6);

7_acket Error Rate in percent

iperf .PER = iperf_cell_array(row_data, 12) ;

Y24ake data same length

if length (iperf. time) -= length (iperf. PER)

len = min([len_h(iperf.PER) length(iperf.time)

length (iperf. BW)]) ;

iperf.time = iperf, time (1 :len) ;

iperf.transfer = iperf .transfer(1 :len) ;

iperf. BW = iperf.BW(1 :len) ;

iperf.PER = iperf.PER(l :len) ;

end

Create iperf handle IIIIIIIIIIIIIIII

if not_all == 1

disp('Matlab could not import all of the data');

end

91

F CODE LISTINGS

5

6

7

8

9

10

11
12

13

14

15

16

17
18

19
20

21

22

23

get_iperf_data.m

Z This is called from the menu of YJ_program

[file path] = uigetfile;

ip_fi = file;ip_pa = path;

if fliplr(file(length(file)-(0:2))) ffi='trt'

temp = importdata([path file]) ;

time = temp.data(:, i) ;

BW = temp.data(: ,3);

PER = temp.data(: ,7);

else

temp = general_iperf (f ile, path) ;

time = temp.time;

BW = temp. BW;

PER = temp.PER;
end

iperf_numeric = 2; ZConditon for iperf_gui

save('iperf_num_wksp','time','BW','PER','iperf_numeric,,

'ip_fi', 'ip_pa')

run iperf_gui

get_iperf_data_igui.m

1

2

3

4

5
6

7

8

X This is called from the menu of iperf_gui under:

X User Input > iperf numeric

[file path] = uigetfile('*.txt','.xls');

if fliplr(file(length(file)-(0:2))) == 'txt'

temp = importdata([path file]);

9 time = temp.data(:,l);

I0 BW = temp.data(:,3);

Ii PER = temp.data(:,7);

12 else

13 temp = general_iperf(file,path)

92

F CODE LISTINGS

14

15

16

17

18

19

20

21

22

23

time = temp.time;

BW = temp.BW;

PER = temp.PER;
end

iperf_numeric = 3; 7,Conditonfor iperf_gui menu

save('iperf_num_wksp','time',_BW','P_',_iperf_numeric , ,
'file', 'path')

run iperf_gui

getfolder.m

1
2

3

4

5

6

function ret = getfolder(path)

ind ffifind(path == '\')',

ret = [path(l:3) '... ' path(ind(length(ind)-l):length(path)-l)] ;

5

6

7

8

9

10

11

12

13

14

15
16

17
18

19

iperf_cell_array.m

1 function ret = iperf_cell_array(data,j)

2

3 len ffilength(data) ;

4

for i = l:len

if -isempty(data{i,j}) _ char(data{i,j}{l})

x = char(data{i,j}{l});

Z condtion for time

k = find(x == '-');

if isempty(k)

if length(x) == length('sec') ...

& X == 'sec'

ret(i,l) = data{i,j+l}; _Transfer column

elseif length(x) ==length('KBytes') ...

& X == 'KByZes'

ret(i,l) = data{i,j+l}; 7$andwidth column

93

F CODE LISTINGS

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

elseif j ---- 12 & str2num(x) > lO0

ret(i,1) = data{i,j+l};

else

ret{i,l} = x;
end

%If number

else

if k ==- 1

ret{i,l} = '0'; _ bad data in file

else

ret{i,1} = x(l:k-1); _bad data import

end

end

if isempty(ret{i,l})

ret{i,l} = O;
end

end

end

ret = str2num(char(ret));

if j _2 & ret(len) == 0
ret = ret(l:len-1)

end

X= 'sec'

if (length(x) == len_h('sec')

% (X = 'sec' _ 'KBytes')

disp('yes');

end

I length('KBytes')) & ...

Iperf_data.m

1 function iperf = Iperf_data(iperf)

2 %

3 % SPACE DELIMITER

4 Z

5 _ USE get_iperf_data.m if possible

94

F CODE LISTINGS

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

3o

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

5O

7. The program reads data files taken by iperf

7. and then literally copied to an Excel spreadsheat

7.Process :

7. I) open text file of iperf data

7. 2) Ctl+a

7. 3) Ctl+c

7, 4) In Excel spreadsheet ctl+v

7. 5) File Save

7. Now run this program and the iperf data will be stored as followed

7. all in the iperf handle, iperf. :

7. Time in seconds (iperf.time)

7. Transfer in KBy_es (iperf.transfer)

7. Bandwidth in Mbit/sec (iperf.BW)

7. Packet Error Rate in percent (iperf.PER

7.

load iperf_loc 7.pa -path and fi -file

path = [pa 'iperf/'] ;

ind = find(fi == '-')

file = [fi(l:ind-l) '.xls'];

not_all = O; 7,condition if all data if imported properly

7. [file path] = uigetfile(' .xls') ;

7. import data

data = importdata([path file]) ;

7_pace delimeter

sp_del = double(char(' ')) ;

7.condition varables

garbage = 7;gar = 0;

ZMain loop

for i = 8:length(data)

7.If data is not empty

if -isempty (data{i})

7_%ead only data lines

if char(data{i}(1)) --=-char('[') _ char(data{i}(2)) -= char('

sp_ind = find(data{i} == sp_del);

sp_ind = [0 sp_ind] ;

') 7.data line

y_Save delimeter col location

for k = l:length(sp_ind)

95

F CODE LISTINGS

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

if ~(k == 4 & i < 17)

if sp_ind(k+l)-sp_ind(k) > 1 7.Testfor multiple spaces

start = sp_ind(k)+l;

stop = sp_ind(k+l)-l;

row_data{i-garbage,k-gar} = {data{i} (start:stop)};

if (k == 3 & i < 18) i (k == 2 & i >= 18)

trap = double (char (row_data{i-garbage, k-gar})) ;
ind = find(trap== 45);

if -isempty (ind)

row_data{i-garbage,k-gar} = {char(tmp(l:ind-l))};

end

end

else

gar = gar +1;
end

else

gar = gar +I;
end

72ER column

if (k+2) > length(sp_ind)

start = sp_ind(k+l)+2;

stop = length(data{i})-2;

if start > length(data{i}(:))

if -isempty(char(row_data{i-garbage,11}))

per_tmp = [char(row_data{i-garbage,lO}) char(row_data{i-garbage

row_data{i-garbage,k-gar+1} = {num2str(eval(per_tmp)*lO0)};

else

row_data{i-garbage} = {''};

end

elseif data{i}(start) == '-' _ (i-garbage) == 1

row_data{i-garbage,k-gar+l} = {'-I'};

else

row_data{i-garbage,k-gar+l} = {data{i}(start:stop)};

end

gar = O;
break

endY2md of PER column

endY2_nd for loop or the row
else 7,If row contain labels

garbage = garbage + 1;
end

96

F CODE LISTINGS

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115.

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

7,Ifstatement for last row of data (PER column)

if (i == length(data))

row_data{i-garbage, 12} = row_data{i-garbage, II};

end

else

not_all = 1;

endY, End of is data cell row empty

end_ End of row

7, Y,If there is a WARNING: in the last row of row_data disp and delete

if not_all == 0 & length(char(row_data{i-garbage,2})) == length('WARNING: ')

j ffi 1;
str = [] ;

while -isempty(row_data{i-garbage, j})

sir = [sir char(row_data{i-garbage,j}) ' '];

row_data{i-garbage,j} = {' '};

j = j+l;
end

disp (str);

end

%\\\\\\\\\\\\\\ Create iperf handle IIIIIIIIIIIIIIII

7,Time in seconds

iperf, time = abs (round (iperf _cell_array (row_dat a, 2))) ;

7.Transfer in KBytes

iperf, transfer = iperf cell_array(row_data,4) ;
7_andwidth in Mbit/sec

iperf.BW = iperf_cell_array(row_data,6);

Y_acket Error Rate in percent

iperf.PER = iperf_cell_array(row_data, 12);

7_Make data same length

if length(iperf, time) < length(iperf .PER)

len = length(iperf.time) ;

iperf.time = iperf, time (I: len) ;

iperf.transfer = iperf.transfer(l :len) ;

iperf. BW = iperf. BW(I :len) ;

elseif length(iperf.PER) < length(iperf.time)

len = length(iperf.PER) ;

iperf, time = iperf, time (I: len) ;

iperf .transfer = iperf .transfer(l :len) ;

iperf.BW = iperf.BW(l:len) ;

end

if not_all --=-1

disp('Matlab could not import all of the data');

97

F CODE LISTINGS

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

end

X
X

X

X

X

X

X

X

X

X

X

X

handles.iperf_figure = figure

set (gcf, 'Name ',handles, filename) ;

[haxes, h_per, h_bw] = plotyy (iperf. t ime, iperf. PER, iperf, time, iperf. BW)

axes (haxes,_jj'4_ • _PER parameters

ylabel ('Packet Error Rate ') ;

ylim([0 lo0]) ;

set (h_per, 'Color ', 'r ') ;

axes (haxes (2)) YEW parameters

ylabel('Bandwidth [Mbits/sec] ')

ylim([O max (iperf. BW)+20])

set (h_bw, 'LineStyle ', '-- ') ;

3

4
5

6

7

8

9

10

11
12

13

iperf_file.m

Z This is called from the menu of YJ_program under:

Z File > Iperf

this command finds the iperf data for the current YJ data file

load handles;

ip_fi = handles.file;

ip_pa = handles.path;

iperf_numeric ffiI; _Conditon for iperf_gui menu

save('iperf_num_wksp','iperf_numeric'

'ip_fi', 'ip_pa')

run iperf_gui

iperf_gui.m

1 function varargout = iperf_gui(varargin)

2 Z IPERF_GUI M-file for iperf_gui.fig

3 _ IPERP_GUI, by itself, creates a new IPERF_GUI or raises the existing

4 _ singleton*.

5 X

6 X H = IPERF_GUI returns the handle to a new IPERF_GUI or the handle to

7 _ the existing singleton,.

98

F CODE LISTINGS

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5o

51

52

X

Y,

X

X

X

X

X

Y,

X

Z

7.

Z

Z

Z

IPERF_GUI (' CALLBACK ', h0bj ect, eventData, iperf) calls the local

function named CALLBACK in IPERF_GUI.M with the given input arguments.

IPERF_GUI ('Property', 'Value') creates a new IPERF_GUI or raises the

existiD E singleton*. Starting from the left, property value pairs are

applied to the GUI before iperf_gui_OpeningFunction gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to iperf_gui OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help iperf_gui

Last Modified by GUIDE v2.50I-Nov-2004 16:56:26

Begin initialization code - DO NOTEDIT

gui_Singleton = I;

gui_State = struct('gui_Name',

'gui_Singleton',

'gui_OpeningFcn',

'gui_OutputFcn',

'gui_LayoutFcn',

'gui_Callback',

if nargin & isstr(varargin{1})

end

mf ilename, ...

gui_Singleton

@iperf_gni_OpeningFcn,

_iperf_gui_OutputFcn,

] 9 • ""

[3);

gui_State.gui_Callback = str2func(varargin{1});

.. °

° .°

if nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

End initialization code - DO NDT EDIT

Z --- Executes just before iperf_gui is made visible.

function iperf_gui_0peningFcn(h0bject, eventdata, iperf, varargin)

This function has no output args, see 0utputFcn.

X h0bject handle to figure

X eventdata reserved - to be defined in a future version of MATLAB

99

F CODE LISTINGS

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

7.iperf structure with iperf and user data (see GUIDATA)

7.varargin command line arguments to iperf_gui (see VARARGIN)

_Creat Menu OptionsO

load iperf_num_wksp

if iperf_numeric -= 3

7. iperf_gui menu

_If called from YJ_workl

file = uimenu('Label','File');

uimenu(file,'Label','Open','Callback','get_iperf_data_igui');
uimenu(file,'Label','Save Plot','Callback','save');

uimenu(file,'Label','Quit','Callback','exit',...

'Separator','on','Accelerator','Q');

PP = uimenu('Label','Plot Properties');

uimenu(PP, 'Label', 'Grid', 'Callback', 'Grid_star');

uimenu(PP, 'Label', 'Clear Graph', 'Callback', 'cla');

end

help = uimenu('Label','Help')

uimenu(help,'Label','Help', 'Callback', 'help_Doc');

if iperf_numeric == 1

load handles;

set(gcf,'Name',handles.filename);

iperf.rssi = handles.rssi;

iperf = Iperf_data(iperf);

set(iperf.rssi_but,'Value',l);

set(iperf.rssi_but,'Visible','on')

else

set(gcf,'Name',ip_fi)

iperf .time = time

iperf.BW = BW

iperf.PER = PER

iperf.rssi_val = O;

set(iperf.rssi_but,'Value',O);

set(iperf.rssi_but,'Visible','off')

end

delete_file = O;

save('iperf_num_wksp','delete_file');

100

F CODE LISTINGS

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

iperf .BW = BW_filter (iperf. BW) ;

save iperf

re_plot (iperf)

Z Choose default command line output for iperf_gui

Xiperf.output = hObject;

Z Update iperf structure

guidata(hObject, iperf);

7. UINAIT makes iperf_gui wait for user response (see UIRESUME)

7. uiwait (iperf. figurel) ;

Z

7.

7.

Z

7.

Z

7.

Z

Z

7. --- Outputs from this function are returned to the command line.

function varargout = iperf_gui_OutputFcn(hObject, eventdata, iperf)

7. varargout cell array for returning output ares (see VARARGOUT);

7. h0bject handle to figure

7. eventdata reserved - to be defined in a future version of MATLAB

7. iperf structure with iperf and user data (see GUIDATA)

Get default command line output from iperf structure

varargout{1} = iperf.output;

7. --- Executes on button press in txt_per_but.

function per_but_Callback(h0bject, eventdata, iperf)

7.hObject handle to txt_per_but (see GCBO)

7.eventdata reserved - to be defined in a future version of Fh_TLAB

7.iperf structure with iperf and user data (see GUIDATA)

re_plot(iperf)

7.Hint: get(hObject,'Value') returns toggle state of txt_per_but

7. --- Executes on button press in txt_rssi_but.

function rssi_but_Callback(hObject, eventdata, iperf)

hObject handle to txtrssi_but (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

7. iperf structure with iperf and user data (see GUIDATA)

re_plot(iperf)

7. Hint: get(hObject,'Value') returns toggle state of txtrssi_but

101

F CODE LISTINGS

143

144

145

146

147

148

149
4_1o0

151

152

153

154

155

156

157

158
159

160

161

162

163
164

165

166

167

168

169

170

171

172

173

174

175

176
177

178

179

180

181
182

183

184

185

186

187

7. --- Executes on button press in bw_but.

function bw_but_Callback(hObject, eventdata, iperf)
7. hObject handle to bw_but (see GCB0)

7. eventdata reserved - to be defined in a future version of MATLAB

7. iperf structure with iperf and user data (see GUIDATA)
re _plot (iperf)

Z Hint: get(hObject,'Value') returns toggle state of bw_but

_++++@+++

Z

function re_plot(iperf)

load iperf
load handles

_clear statistics

set(iperf.mean_rssi,'String','');

set(iperf.mean_bw,'String',");

set(iperf.meanper,'String','');

set(iperf.v_r_rssi,'String','');

set(iperf.var_bw,'String','');

set(iperf.varper,'String',");

opt = O;

bw_val = get(iperf.bw_but,'Value');

per_val = get(iperf.per_but,'Value');

rssi_val = get(iperf.rssi_but,'Value');

subplot(I,1,1)

if rssi_val == 0

Zcleartxt_rssi statistics

set(iperf.mean_rssi,'Visible','off');

set(iperf.var_rssi,'Visible','off');

subplot(I,1,1)

if (get(iperf.bw_but,'Value') & get(iperf.per_but,'VRlue')) == 1
7_lot TXT_PER and BW information

[haxes,h_per,h_bw] = plotyy(iperf.time,lO0-iperf.PER

iperf.time(l:length(iperf.BW)),iperf.BW);

title('Datagrams Received [Z] and BW [Mbits/sec] ') ;
7.AxisLabel

set (get(haxes(I),'Ylabel '), 'String', 'Percent ')

set(get(haxes(2),'Ylabel'),'String','Mbit/sec')

7_xis limits

102

F CODE LISTINGS

188

189

190
191

192

193

194

195

196

197

198

199

200

201

202

203

2o4

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

ylim(haxes(1), [0 105]) ;

ylim(haxes(2), [0 10]) ;

7_ine Properties

set(h_per, 'Color','b');

set (h_bw,'LineStyle ','--');
Y,Set GUI Visulation Parameters

set(iperf.mean_b,, 'Visible ','off ');

set (iperf.var_bw, 'Visible ','off');

set(iperf.mean_bw,'Visible','on');

set(iperf.var_bw,'Visible','on');

set(iperf.mean_bw,'String',num2str(mean(iperf.BW)));

set(iperf.var_bw,'String',num2str(var(iperf.BW)));

set(iperf.mean_per,'Visible','on');

set(iperf.var_per,'Visible','on');

set(iperf.mean_per,'Striug',num2str(100-mean(iperf.PER)));
set(iperf.var_per,'Striag',num2str(var(iperf.pER)));

time = iperf.time;

PER = iperf.PER;

BW = iperf.BW;

file = ip_fi;

save ('current_data', 'time', 'PER', 'BW', 'file') ;

elseif get (iperf.per_but,'Value') == 1 & get (iperf.bw_but,'Value') ==0
721ot TXT_PER

plot (iperf.time,lO0-iperf.PER);title ('Datagrams Received [X]');

ylabel ('Percent ') ;

ylim([0 105]) ;
7_et GUI Visulation Parameters

set (iperf.mean_bw, 'Visible ','off ');

set (iperf.var_bw, 'Visible','off');

set(iperf.mean_per,'Visible','on');

set(iperf.var_per,'Visible','on');

set(ipel-f.mean_per,'String',numgstr(lOO-mean(iperf.pER)));

set(iperf.var_per,'String',num2str(var(iperf.pER)));

time = iperf.time;

PER= iperf.PER;

file = ip_fi;

save('current_data','time','PER','file');

elseif get(iperf.per_but,'Value') == 0 & get(iperf.bw_but,'Value') ==1

103

ii:i

F CODE LISTINGS

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

26O

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

7_Ulot BW

plot (iperf. time, iperf. BW) ; title (' BW [Mbits/sec] ') ;

axis([O length(iperf.time) 0 10]) ;
Y_et GUI Visulation Parameters

set (iperf. mean_bw, "Visible ','on ');

set (iperf. var_bw, 'Visible ','on');

set (iperf .mean_bw, 'String', num2str (mean (iperf. BW))) ;

set (iperf. var_bw, :String ', num2str (var (iperf. BW))) ;

set (iperf .mean_per, 'Visible ', 'off ') ;

set (iperf. var_per, 'Visible ', 'off ') ;

time = iperf.time;

BW = iperf.BW;

file = ip_fi;

save('current_data',"time','BW','file');

elseif (get(iperf.bw_but,'Value') _ get(iperf.per_but,'Value')) == 0

subplot(I,1,1)

plot(O,O)

title('Nothin E Selected');
7_et GUI Visulation Parameters

set(iperf.mean_per, JVisible','off');

set(ipel_.Var_rssi,'Visible','off');

set(iperf.var_bw,'Visible',Joff');

set(iperf.var_per,'Visible','off');

end

elseif rssi_val == 1

Y_Set txt_rssi statistics

set(iperf.mean_rssi,'Visible','on');

set(iperf.var_rssi,'Visible','on');

set(iperf.mean_rssi,'String',num2str(mean(iperf.rssi)));

set(iperf.var_rssi,'String',num2str(var(iperf.rssi)));

subplot(211)

if (get(iperf.bw_but,'Value') & get(iperf.per_but,'Value')) == 1

[haxes,h_per,h_bw] = plotyy(iperf.time,100-iperf.PER,

iperf.time,iperf.BW(l:length(iperf.time)));

title('Datagrams Received [_] and BW [Mbits/sec]');

Y_xis Label

set(get(haxes(1),'Ylabel'),'String','Percent')

set(get(haxes(2),'Ylabel'),'String','Mbit/sec')

7Axis Limits

ylim(haxes(1),[O 10511;

104

F CODE LISTINGS

278

279

280
281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298
299

30O

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

ylim(haxes(2), [0 10]) ;

7_ine Properties

set (h_per, ' Color', 'b') ;

set (h_bw,'LineStyle ','--');

Y_et GUI Visulation Parameters

set (iperf.mean_bw,'Visible ','on');

set (iperf.var_bw, 'Visible ','on');

set (iperf. mean_bw, ' String ', num2str (mean (iperf. BW))) ;

set (iperf. var_bw, 'String', num2str (vat (iperf. BW))) ;

set (iperf.mean_per,'Visible ','on');

set (iperf.var_per, 'Visible','on');

set (iperf.mean_per, 'String ',num2str(100-mean(iperf.PER)));

set (iperf.var_per, 'String ',num2str(var(iperf.PER)));

time = iperf,time;

PER = iperf.PER;

BW = iperf.BW;

rssi = iperf.rssi;

file ffiip_fi;

save('current_data', 'time','PER','BW','rssi','file');

elseif get(iperf.per_but,'Value') == 1 & get(iperf.bw_but,'Value') ==0

plot(iperf.time,lOO-iperf.PER);title('Datagrams Received [_]');
ylabel('Percent');

ylim([O 105]);
7_et GUI Yisulation Parameters

set(iperf.mean_bw,'Visible','off');

set(iperf.var_bw,'Visible','off');

set(iperf.mean_per,'Visible','on');

set(iperf.var_per,'Visible','on');

set(iperf.mean_per,'String',num2str(lOO-mean(iperf.PER)));

set(iperf.var_per,'String',num2str(var(iperf.PER)));

time ffi iperf.time;

PER = iperf.PER;

rssi = iperf.rssi;

file = ip_fi;
save (' current_data', "time ' ,'PER','rssi','file');

elseif get(iperf.per_but,'Value') == 0 & get(iperf.bw_but,'Value') ==1

plot(iperf.time,iperf.BW);title('BW [Mbits/sec]');

_Set GUI Visulation Parameters

105

F CODE LISTINGS

323

324

325

326

327

328

329

330

331

332

333

334

335

336
337

338
339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

end

set(iperf.mean_bw,'Visible','on');

set(iperf.var_bw,'Visible','on');

set(iperf.mean_bw,'String',num2str(mean(iperf.BW)));

set(iperf.var_bw,'String',num2str(var(iperf.BW)));

set(iperf.mean_per,'Visible','off');

set(iperf.var_per,'Visible','off');

time = iperf.time;

BW = iperf.BW;

rssi = iperf.rssi;

file = ip_fi;

save('current_data','time','rssi','BW','file');

elseif (get(iperf.bw_but,'Value') _ get(iperf.per_but,'Value')) == 0

subplot(l,1,1)

plot(iperf.rssi);title('RSSI');

ylabel (' dBm')

opt = 1;
_Set GUI Yisulation Parameters

set(iperf.mean_bw,'String',");

set(iperf.var_bw,'String','');

set (iperf. mean_per, 'String', ' ') ;

set (iperf. var_per, 'String', ' ') ;

end

if opt == 0

subplot(212)

plot (iperf.rssi) ;title('RSSI');

ylabel('dBm')

end

Z --- Executes during object creation, after setting all properties.

function mean_txt_rssi_CreateFcn(hObject, eventdata, handles)

hObject handle to mean_txt_rssi (see GCBD)

eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc

106

F CODE LISTINGS

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382
383

384

385

386

387

388

38g

390

391

392

393

394

395

396

397

398

399

400

401
402

403

404

405

406

407
408

409

410

411

412

set(hObject,'BackgroundColor','white');
else

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor'));
end

function . ^ .I , , . ._mean_txt_rssi__ai±bacK_hub3_ct, eventdata, handles)

hObject handle to mean_txt_rssi (see GCBO)

eventdata reserved - to be defined ill a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Hints: get(hObject,'String') returns contents of mean_txt_rssi as text

str2double(get(hObject,'String')) returns contents of mean_txt_rssi as a double

Z --- Executes during object creation, after setting all properties.

function var_txt_rssi_CreateFcn(hObject, eventdata, handles)

hObject handle to var_txt_rssi (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor'));

end

function var_txt_rssi_Callback(hObject, eventdata, handles)

hObject handle to var_txt_rssi (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Z Hints: get(hObject,'String') returns contents of var_txt_rssi as text

str2double(get(hObject,'String')) returns contents of var_txt_rssi as a double

Z --- Executes during object creation, after setting all properties.

function var_bw_CreateFcn(hObject, eventdata, handles)

hObject handle to var_bw (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

107

F CODE LISTINGS

413

414

415

416

417

418

419

420

421

422

423

424

425

426
427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444
445

446

447

448

449

450

451

452

453

454

455

456

457

Y. handles empty - handles not created until after all CreateFcns called

7. Hint : edit controls usually have a white background on Windows.

7, See ISPC and COMPUTER.

if ispc

set (h0bj ect, 'BackgrotmdColor ', 'white ') ;

else

set (h0bj e ct, ;BackgroundCoior _,get (0, ;def auitUicontroiBackgroundCoior')) ;

end

function var_bw_Callback(hObject, eventdata, handles)

hObject handle to var_bw (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Hints: get(hObject,'String') returns contents of var_bw as text

str2double(get(h0bject,'String')) returns contents of var_bw as a double

--- Executes during object creation, after setting all properties.

function mean_bw_CreateFcn(hObject, eventdata, handles)

hObject handle to mean_bw (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Z Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTF__.

if ispc

set(h0bject,'BackgroundColor','white');

else

set(h0bject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor,));

end

function mean_bw_Callback(hObject, eventdata, handles)

hObject handle to mean_bw (see GCB0)

eventdata reserved - tobe defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Hints: get(hObject,'String') returns contents of mean_bw as text

str2double(get(h0bject,'String')) returns contents of mean_bw as a double

108

F CODE LISTINGS

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475
476

477

478

479

480

481

482

483

484

485

486

487
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

Z --- Executes during object creation, after setting all properties.

function var_txt_per_CreateFcn(hObject, eventdata, handles)

7, hObject handle to var_txt_per (see GCBO)

7, eventdata reserved - to be defined in a future version of MATLAB

7. handles empty - handles not created until after all CreateFcns called

7*Hint: edit controls usually have a white background on Windows.
7* See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(O,_defaultUicontrolBackgroundColor'));

end

function var_trt_per_Callback(hObject, eventdata, handles)

7*hObject handle to var_txt_per (see GCBO)
7,eventdata reserved - to be defined in a future version of MATLAB

7,handles structure with handles and user data (see GUIDATA)

7, Hints: get(hObject,'String') returns contents of var_txt_per as text

str2double(get(hObject,'String')) returns contents of var_txt_per as a double

7, --- Executes during object creation, after setting all properties.

function mean_txt_per_CreateFcn(h0bject, eventdata, handles)

7, h0bject handle to mean_txt_per (see GCB0)
eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

7, Hint: edit controls usually have a white background on Windows.

7, See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor',Jwhite');
else

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor'));
end

function mean_txt_per_Callback(h0bject, eventdata, handles)

7,hObject handle to mean_txt_per (see GCBO)

7, eventdata reserved - to be defined in a future version of MATLAB

109

F CODE LISTINGS

5O3
504

505

506

507

508

509

v.tO

511

512

513

514

515

516

517

518

519

52O

521

522
523

524

525

526

527
528

529

530

531

532

533

534
535

536

537

538

539

540

541

542

543

544

545

546

547

7. handles structure with handles and user data (see GUIDATA)

Y. Hints: get(hObject, 'String') returns contents of mean_txt_per as text

7. str2double(get(hObject, 'String')) returns contents of mean_txt_per as a double

Z --- Executes on button press in Ext_fig.

f-.mctionExt_fig_Callback(hDbject, eventdata, handles)

7.h0bject handle to Ext_fig (see GCB0)

7.eventdata reserved - to be defined in a future version of MATLAB

Y, handles structure with handles and user data (see GUIDATA)

load current_data

n_ =figure

set (name, 'Name ',file)

set (name, 'NumberTitle ', 'off ')

if exist('PER') & exist('BW')

Y21ot TXT_PER and BW information

[haxes,h_per,h_bw] = plotyy(time,IO0-PER

time (I:len_h (BW)),BW);

title('Datagrams Received [7.]and BW [Mbits/sec]');
7_xis Label

set (get (haxes (I), 'Ylabel '), 'String ', 'Percent ')

set (get (haxes (2), 'Ylabel '), 'String ', 'Mbit/sec ')

Y_%xis limits

ylim(haxes(1), [0 105]) ;

ylim(haxes(2), [0 I0]);
Y_Line Properties

set (h_per,'Color', 'b');

set (h_bw,'LineStyle','-.');

legend([h_per h_bw], 'Datagram','Bandwidth')
elseif exist ('PER')

721ot TXT_PER

plot (time,100-PER) ;title ('DatagTams Received [7.]');

title('Datagrams Received [7.]');

ylabel ('Percent');

ylim([0 1o5]);
legend('Percent')

elseif exist ('BW')

721ot BW

plot (time,BW) ;title ('BW [Mbits/sec]');

title('BW [Mbits/sec] ') ;

110

F CODE LISTINGS

548

549

55O end

legend('Bandwidth');

iperf_pre.m

load iperf

if ishandle(iperf.figurel)

close(iperf.figurel)

end

run iperf_gui;

mouse_data.m

1 7_ebastianStewart

2 X=

3

4

5

6

7

8

9

10

II

12

13

14

15
16

17

18

19

2O

21
22

23

24

25

26

_This program is what allows the user to

7_ight click on the delay spread plot and

_select function to execute

X

cmenu = uicontextmenu;

mu = handles.DS_mean* ...

ones(1,1ength(handles.current_data));

handles.ds_plot = plot(handles.current_data, 'UIContextMenu',cmenu);

hold on;

handles.sds_plot = plot(mv_data,'r', 'UIContextMenu',cmenu);

handles.mu_plot = plot(mu,'g' ...

,'UIContextMenu',cmenu);

hold off;

set(cmenu,'Tag',char(handles.ssid_name)) ;

_these are the funciton that execute when item are selected

cbl = ['this'I;

cb2 = ['sds_menu(handles) '] ;

cb3 = ['uiresume'] ;

_These are what get displayed when right click of mouse on object

iteml = uimenu(cmenu, 'Label', 'This'

'Callback', cbl);

item2 = uimenu(cmenu, 'Label', 'MA Delay Spread'

iii

F CODE LISTINGS

27

28

29

'Callback', cb2) ;

item3 = uimenu (cmenu,

' Callback', cb3) ;

'Label', 'resume',

new_file.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

[iperf.file iperf.path] = uigetfile('*.txt');

set(gcf,'Name',iperf.file);

temp = importdata([iperf.path iperf.file]);

iperf.time = temp.data(:,l);

iperf.BW = temp.data(:,3);

iperf.PER= temp.data(:,7);

load handles;

iperf.rssi ffihandles.rssi;

iperf ffi Iperf_data(iperf)

save iperf

re_plot(iperf)

re_plot.m

ssid_iindnew.m

1 function [ssid_names, ssid_index] = ssid_findnew(data,col)

2

3 %

4 7_%ssumptions The data is sorted by channel and SSID

5 7.this program:]

6 7. I) outputs the index of each ssid

7 7. 2) output cell array of the ssid in the data

8 7.

9

10 7. initial ffi 0

11 7.start = [];

12

7.searchin g for new ssid name

112

F CODE LISTINGS

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

Y, 7,set initial ssid name

ssid_names = {};

7. Y.set initial ssid index

ssid_index = [] ;

7_earch all rows

for i = 2:length(data)

if char(data{i, col})

_,if strings are same

length(char(data{i, col}));

length (char(data{i-I,col}));

char(data{i,col}) ;

char (data{i-i, col}) ;

if length(char(data{i,col})) -= length(char(data{i-l,col}))

ssid.index(length(ssid_index)+l) = i-l;

ssid_index(length(ssid_index)+l) = i;

ssid_names{length(ssid_names)+l,l} = data(i,col);

elseif length(char(data{i,col})) == length(char(data{i-l,col}))

& char(data{i,col}) "= char(data{i-l,col})

ssid_index(length(ssid_index)+l) = i-l;

ssid_index(length(ssid_index)+l) = i;

ssid_names{length(ssid_names)+l,l} = data(i,col);

end

end

end

ssid_index(length(ssid_index)+1) = i;

time_sample_data.m

function handles = time_sample_data(handles)

7_andles used: row handles created: tsmpl

user_sir = {'user'};

tm_per = .I:.I:I

ssid_len = handles.row(2)-handles.row(1)

time_pts = unique(ceil(ssid_len.*tm_per))

113

F CODE LISTINGS

8

9

10

11
12

13

14

15

16

handles.tsmp1 = time_pts(1)

7. time_pts = cellstr(time_pts)

y = cellstr(time_pts);

time_pts = cat(2,y,user_str) ;

set (handles. dwn_samp, 'String ',t ime_pts)

1

2

3

4

YJ_workl.m

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

function varargout = YJ_workl(varargin)

7.for_data (90,184)

7.data_fetch (445)

7.time_sample_data (356, 421)

7.delay_spread (371,421,439)

7.col_find (99,190)

7.cell_find (188)

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

YJ_WORKI M-file for YJ_workl.fig

YJ_WORKI, by itself, creates a new YJ_WDRKI or raises the existing

singleton*.

H = YJ_WORKI returns the handle to a new YJ_WORKI or the handle to

the existing siI_leton*.

YJ_WORKl('CALLBACK',hObject,eventData,handles) calls the local

function named CALLBACK in YJ_WOKK1.M with the given input arguments.

YJ_WORKl('Property','Yalue') creates a new YJ_WORKI or raises the

existing singleton*. Starting from the left, property value pairs are

applied to the GUI before YJ_workl_OpeningFunction gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to YJ_workl_OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

instance to run (singleton)".

114

F CODE LISTINGS

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72
73

74

75

76

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help YJ_workl

% Last Modified by GUIDE v2.5 24-Jui-2004 14:29:00

Begin initialization code - DO NDTEDIT

gui_Singleton = I;

guiState = struct('gui_Name', mfilename

'gui_Singleton', gui_Singleton, ...

'Eui_OpeningFcn', @YJ_workl_OpeningFcn,

'gui_OutputFcn', @YJ_workl_OutputFcn,

'gui_LayoutFcn', []

'gui_Callback', []);

if nargin & isstr(varargin{l})

gui_State.gui_Callback = str2func(varargin{1});

end

.°.

if nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

End initialization code - DO NOT EDIT

--- Executes just before YJ_workl is made visible.

function YJ_workl_OpeningFcn(h0bject, eventdata, handles, varargin)

This function has no output args, see 0utputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

varargin command line arguments to YJ_workl (see VARARGIN)

_This is not yet working completly

_Creat Menu OptionsO.

file = uimenu('Label','File');

uimenu(file,'Label','Iperf','Callback','iperf_file');

uimenu(file,'Label','Save Plot','Callback','save');

uimenu(file,'Label','Quit','Callback','exit'

'Separator','on','Accelerator','Q');

PP = uimenu('Label','Plot Properties');

uimenu(PP, 'Label', 'Grid', 'Callback', 'Grid_star');

115

F CODE LISTINGS

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

uimenu(PP, 'Label', 'Clear Graph', 'Callback', 'cla');

User_input = uimenu('Label','User Input');

uimenu(User_input,'Label','iperf numeric','Callback','get_iperf_data');

help = uimenu('Label','Help');

uimenu(help,'Label','Help', 'Callback', 'help_Doc');

_Read file name and path

[handles.filename handles.path] = uigetfile('*.out');

7_ave file name for iperf call

fi=handles.filename; pa=handles.path;

save iperf_Ioc fi pa

7_how Path on YJ figure

folder = getfolder(handles.path);

set(handles.figurel,'Name',folder);

7J)efine file location

file_loc = [handles.path handles.filename];

98

99

I00

I01

102

103

104

105

106

107

108

109

110

IIi

112

113

114

115

116

117

118

119

120

121

_Show file name in filename box

set(handles.file,'StringJ,handles.filename);

h = waitbar(O, 'Please wait... ') ;

7, 7,Import the data as Cell Array

s = importdata(file_loc, '\t');

waitbar(lO/lO0);

_If structure then convert to Cell Array

if isstruct(s)

s = struct2cell(s)

end

7_iscretize the Cell Array by delimiter
handles.data = for_data(s);

waitbar(.5) _update waitbar

Y_ead labels

[labels header_index handles.ref] = ...

cell_find(handles.data, [{'SSID'} {'Multipath Data'} {'Data Rate'} ...

{'RSSI'} {'Latitude (Dec. Deg.)'} {'Longitude (Dec. Deg.)'} ...

{'Altitude (FT)'}]);

116

F CODE LISTINGS

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137
138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

handles = col_find(handles) ;

7.

7.

7.

7.

handles.tel contain columns location of

cell array specified above

7_SID header_index has ssid column number in first element

waitbax (. 75)

7_ind the rows of the rows of each ssid

[ssid_names handles.ssid_row] = ssid_findnew(handles.data, handles.col_ssid) ;

7. Display SSid names is ssid_name_array pop-up menu

ssid_names = cellarray(ssid_names) ;

set (handles. ssid_name_array, _String _....

ssid_names) ;

7.Get first ssid name displayed in handles.ssid_name_array

handles = ssid_name_array_Callback(handles, ssid_name_array, eventdata, handles) ;

7.Get first Time Point displayed in handles.tsmpl

handles = dwn_samp_Callback(handles, dwn_samp, eventdata, handles) ;

plot_Callback (hObj ect,

waitbar (1)

close (h) ;

save handles

eventdata, handles)

7._=GUI STUFF

%1 I I I I I I I I I I I I I I
%V V \/ V \/ V V V V V V V V V \/

7. Choose default command line output for YJ_workl

handles, output = hObject ;

7. Update handles structure

guidata(h0bject, handles) ;

7, UIWAIT makes YJ_workl wait for user response (see UIRESUME)

7, uiwait (handles. figure1) ;

--- Dutputs from this function are returned to the command line.

function varargout = YJ_workl_OutputFcn(h0bject, eventdata, handles)

varargout cell array for returning output args (see VARARGOUT);

hObject handle to figure

117

F CODE LISTINGS

167

168

169
170

171

172

173

174

175

176

177

178

179

180

181

182
183

184

185

186

187

188

189
190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

7, eventdata reserved - to be defined in a future version of MATLAB

7, handles structure with handles and user data (see GUIDATA)

7, Get default command line output from handles structure

varargout{l} = handles, output;

_' PUSH BOTTONS

,:

7, --- Executes on button press in browse.

function browse_Callback(h0bject, eventdata, handles)

clc;

load handles

7,Create Menu Options

7.-

7, f = uimenu('Label','Plot Protperties');

Z uimenu(f,'Label','New Figure','Callback','figure');

7, uimenu(f,'Label','Save','Callback','save');

7,

7,

7,

uimenu(f,'Label','Quit','Callback','exit'

'Separator','on','Accelerator','Q');

file = handles.filename;pa = handles.path ;

7, save wksphObject file pa

7,clear

load wksp

7, hObject

7, eventdata

handles

7,set(handles.ssid_name_array,'String',);

Z\\\\\\\\\\\ DATA DISPLAY PROGRAM ///////////////////

handle to browse (see GCBO)

reserved - to be defined in a future version of MATLAB

structure with handles and user data (see GUIDATA)

7_ead file name and path

[handles.filename handles.path] = uigetfile('*.out');

if handles.path -= 0

7_how Path on YJ figure

folder = getfolder(handles.path);

set(handles.fiEurel,'Name',folder);

Y_efine file location

118

F CODE LISTINGS

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

25o

251

252

253

254
255

256

file_loc = [handles.path handles.filename] ;

7_ave file name for iperf call

f i=handles, f ilename; pa=handles, path;

save iperf_loc fi pa

7_how file name in filename box

set (handles. file, _String', handles, filename) ;

h = waitbar(O,'Please wait...');

7. 7.Import the data as Cell Array

s = importdata(file_loc, '\t') ;

waitbar(lO/lO0);

7.1f structure then convert to Cell Array

if isstruct(s)

s = struct2cell(s);

end

7. Yj)iscretize the Cell Array by delimiter

handles.data = for_data(s);

waitbar (.5) Zupdat a waitbar

7_ead labels

[labels header_index handles.ref] = ...

cell_find(handles.data, [{'SSID'} {'Multipath Data'} {'Data Rate'} ...

{'RSSI'} {'Latitude (Dec. Deg.)'} {'Longitude (Dec, Deg.)'} ...

{'Altitude (FT)'}]);

handles = col_find(handles);

7.

7.

7.

handles.ref contain columns location of

cell array specified above

Y_SID header_index has ssid column number in first element

waitbar(.75)

Y_ind the rows of the rows of each ssid

[ssid_names handles.ssid_row] = ssid_findnew(handles.data, handles.col_ssid);

119

F CODE LISTINGS

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

3O0

301

7,Display SSid names is ssid_name_array pop-up menu

ssid_names --cellarray(ssid_names) ;

set (handles. ssid_name_array, 'String'

ssid_mames) ;

7,Get firsz ssid name displayed in handles.ssid_name_array

handles = ssid_name_array_Callback(handles, ssid_name_array, eventdata, handles) ;

,,_et first Time Point displayed in handies.tsmpl

handles = dwn_samp_Callback(handles, dwn_samp, eventdata, handles) ;

waitbar (i)

close (h) ;

else

handles.filename = file;

handles.path = pa;

end

save handles;

7.

Y,\\\\\\\\\\\\\\\\\\\\\ Other plotting functions�l�1�1�1��������

7,--- Executes on button press in surf.

function surf_Callback(hObject, eventdata, handles)

Y,hObject handle to surf (see GCBO)

Y,eventdata reserved - to be defined in a future version of MATLAB

_,handles structure with handles and user data (see GUIDATA)

[r c] = size (handles. current_data) ;

if c> 1

x -- [-2:0.25:3.25] ;

y = [l:r] ;

surf (x, y,handles, current_dat a(:,handles, col_in: handles, col_fn)) ;

xlabel ('Chips ');

ylabel('Relative time') ;

end

Y,--- Executes on button press in contour.

function contour_Callback(hObject, eventdata, handles)

7,h0bject handle to contour (see GCB0)

7.eventdata reserved - to be defined in a future version of MATLAB

7.handles structure with handles and user data (see GUIDATA)

[r c] = size(handles, current_data) ;

if c>1

x = [-2:0.25:3.25] ;

y = [l:r] ;

contour (x, y, handles, current_data (:, handle s. col_in: handles, col_fn)) ;

120

F CODE LISTINGS

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317
318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

34O

341

342

343

344

345

346

xlabel('Chips');

ylabel('Relative time');
end

7. --- Executes on button press in mesh.

function mesh_Caiiback(hObjecZ, evenzdaza, handles)

7. hObjecZ handle to mesh (see GCBO)

7. eventdata reserved - to be defined in a future version of MATLAB

7. handles structure with handles and user data (see GUIDATA)

[r c] = size (handles. current_data) ;

if c>1

x = [-2:0.25:3.25] ;

y = It:r];

mesh (x, y,handles, current_data(: ,handles. col_in :handles. col_fn)) ;

xlabel ('Chips ');

ylabel ('Relative time ');
end

7. --- Executes on button press in plot.

function plot_Callback(hObject, eventdaZa, handles)

7.hObject handle to plot (see GCBO)

7. eventdata reserved - to be defined in a future version of MATLAB

7. handles structure with handles and user data (see GUIDATA)

clc

if handles.file

ts = handles.tsmpl;

[r c] = size (handles. current_data) ;

7.If Delay Spread is Selected
if c _ 1

ZN-point Moving average filter for Delay spread

len = length(handles.current_data)

npts = ask_npts(handles)

num= ones(1,npts)/npts;
mv_data = filter(num,l,handles.current_data);

title([num2str(npts) ' MA filter'])

121

F CODE LISTINGS

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

grid on;

ylabel ('Nanoseconds ');

xlabel ('Relative Time ') ;

7J4ouse select Property

run mouse_data

7,If Multipath is Selected

elseif c > 1

h = waitbar(O, 'Please wait... ');

7,Get Status of Radio Button

val = get(handles.riB, 'Value') ;

x = [-2:0.25:3.25] ;

_,Create down sample index

dsi = l:r/ts:r;

y = [round(dsi)] ;

7.Check if Radio buton

if val = 1 7.In dB

z = lO*loglO(handles.current_data(y

handles, col_in:handles, col_f n)) ;

waitbar (. 6)

else _In decimal

z = handles, current_data(y

handles, col_in: handles, col_f n) ;

waitbar (.6)

end

7,Chip vector

7,Time Sample vector

axe s (handles. axes 1)

mesh(x,y,z) ;title([num2str(ts) ' samples'])

xlabel (' Chips ') ;

ylabel ('Relative time ');

waitbar (. 9)

close (h) ;

else

title('Could not display data') ;
end

end

save handles

Z\\\\\\\\\\\\\\\\\\\\ POPUP MENU IIIIIIIIIIIIIIIIIII!111111111

Z\\\\\\\\\\\\\\\\\\\\\\\\\VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Z\\\\\\\\\\\\\\\\\\\\\\\\\\lllllll/llllllllll//llllll/llll/lll

Z --- Executes during object creation, after setting all properties.

function select_data_CreateFcn(hObject, eventdata, handles)

h0bject handle to select_data (see GCBO)

122

F CODE LISTINGS

392

393

394

395

396

397

398

399

400

401

402

403

404

4o5
406

407

4o8

409

410

411

412

413

414

415

416

417

418

419

42o

421

422

423

424

425

426

427
428

429

430

431

432

433

434

435

436

7,eventdata reserved - to be defined in a future version of MATLAB

7,handles empty - handles not created tmtil after all CreateFcns called

guidata(hObject,handles);

7, Hint: popupmenu controls usually have a white background on Windows.

7, See ISPC and COMPU_.

if ispc

set(hObject,'BackgroundColor_,'white');
else

set(hDbject,_BackgroundColor',get(O,_defaultUicontrolBackgroundColor,));

end

7, --- Executes on selection change in select_data.

function handles = select_data_Callback(h0bject, eventdata, handles)

7, hObject handle to select_data (see GCBO)

7, eventdata reserved - to be defined in a future version of MATLAB

7, handles structure with handles and user data (see GUIDATA)

val = get(hObject,'Value,);

str= get(hObject, 'String');
switch str{val};

case 'Multipath'

[r c] = size(handles.current_data)

if r > 10

time_sample_data(handles);
end

handles.current_data = handles.MP;

7,ClearDelay Spread info

set(handles.mean,'String_,[]);

set(handles.std_dev,'String',[]);

case 'Delay Spread'

set(handles.dwn_samp,'String', D);

handles.current_data = delay_spread(handles.MP);
7,Calc mean and standard deviation

handles.DS_mean = mean(handles.current_data)

set(handles.mean,'String',handles.DS_mean);

handles.DS_sigma = std(handles.current_data)

set(handles.std_dev,'String',handles.DS_sigma);
end

guidata(hObject,handles);

7, Hints: contents = get(hObject,'String') returns select_data contents as cell array
7, contents{get(hObject,'Value')} returns selected item from select_data

123

F CODE LISTINGS

437

438

439
440

441

442

443

444

445

446

447

448

449

450

451

452

453
454

455

456

457

458

459
460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

7. SSID NAME

_ POPUP..........

--

7. --- Executes during object creation, after setting all properties.

function ssid_name_array_CreateFcu(h0bject, eventdata, handles)

7. hObject handle to ssid_name_axTay (see GCB0)

Y. eventdata reserved - to be defiued in a future version of MATLAB

7. handles empty - handles not created until after all CreateFcns called

guidat a (hObj ect, handles) ;

7. Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(h0bject,'BackgreundColor',get(O,'defaultUicontrolBackEroundColor')) ;

end

_THIS IS THE USER SELECT SSID FUNCTION

% I

X\I \I \I \I \I \I \I \I \I \I \I \I V \I V \I \I \I \I \I

function handles = ssid_name_array_Callback(hObject, eventdata, handles)

hObject handle to ssid_name_array (see GCB0)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

val = get (hObject, 'Value') ;

str= get (hObj ect, ' String') ;
if length(str) < 2 & val >1

val = 1;
end

handles.ssid_name = str(val);

7_andles = col_find(handles)

...... Use this code until fixed ssid_row from function

...... ssid_findnew

len = length(handles.ssid_row);

if mod(len,2)

handles.row = handles.ssid_row(2*val:(2*val+1));

else

handles.row = handles.ssid_row(2*val-1:(2*val));

end

124

F CODE LISTINGS

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521
522

523

524

525

526

Y_et the time sample data select options

handles = time_sample_data(handles);

O#

7," Multipath data-

col = [handles. col_in handles, col_fn] ;

handles. MP = data_fetch (handles. row, col, handles, data) ;

7," -Set currant data

if get (handles. select_data, 'Value') == 2

handles, current_dat a = delay_spread (handles. MP) ;

Y,Calc mean and standard deviation

handles. DS_mean = mean(handles, current_data) ;

set (handles. mean, 'String', handles. DS_mean) ;

handles. DS_sigma = sial(handles, current_data) ;

set (handles. std_dev, 'String', handles. DS_sigma) ;

else

handles, current_data = handles.MP;

end

yjaandles.ssidname = get(handles.ssid_name_array,'String');

guidata(h0bject,handles);

Hints: get(h0bject,'String') returns contents of ssid_name_array as text

str2double(get(h0bject,'String')) returns contents of ssid_name_array as a double

FILE NAME

--- Executes during object creation, after setting all properties.

function file_CreateFcn(h0bject, eventdata, handles)

hObject handle to file (see GCB0)

eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

guidata(h0bject,handles)

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

125

F CODE LISTINGS

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567
568

569

570

571

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor,));
end

function file_Callback(hObject, eventdata, handles)

hDbject handle to file (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

handles.file = get(handles.file,"String');

guidata(hObject,handles)

Hints: get(hObject,'String') returns contents of file as text

str2double(get(hObject,'String')) returns contents of file as a double

Z _--EXTERNAL FIGURE

X_.............

--- Executes on button press in ext_fig.

function ext_fig_Callback(hDbject, eventdata, handles)

hObject handle to ext_fig (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

name = figure

file = handles.filename;

ssid = handles.ssid_name{1};

set(name,'Name',handles.filename)

set(name,'NumberTitle','off')

val = get (handles. dwn_samp, 'Value ') ;

sir = get (handles. dwn_samp, 'String') ;

7.Convertto integer

ts = handles.tsmpl;

[r c] = size(handles.current_data);

if c == 1

plot(handles.current_data)

hold on;

plot(handles.DS_mean*ones(l,length(handles.current_data)),

hold off;

title([' Delay Spread of ' file(l:length(file)-9)]);
elseif c > 1

ZGet Status of Radio Button

val = get(handles.dB,'Value ')

x = [-2:0.25:3.25]; ZChip vector

'g');

126

F CODE LISTINGS

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607
608

609
610

611

612

613

614

615

616

Y,Create down sample index

dsi = l:r/ts:r;

y = [round(dsi)];
7,Checkif Radio buton

if val --= 1 ZIn dB

z = lO*loglO(handles, current_data(y,
handles, col_in: handles, col_fn)) ;

else ZIn decimal

z = handles,current_data(y

handles, col_in:handles, col_fn);
end

XTime Sample vector

else

end

mesh(x,y,z);

title([' Power Delay Profile of ' file(l:length(file)-9)]);

title(['Could not display data for ' ssid]);

xlabel('Chips');

ylabel('Relative time');

zlabel(['Relative Correlation of ' ssid]);

Z --- Executes during object creation, after setting all properties.
function mean_CreateFcu(hDbject, eventdata, handles)

hObject handle to mean (see GCBD)
eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Z Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor'));
end

function mean_Callback(hObject, eventdata, handles)

hDbject handle to mean (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Z Hints: get(hObject,'String') returns contents of mean as text

Z str2double(get(hObject,'String')) returns contents of mean as a double

127

ii i

F CODE LISTINGS

617

618

619

620

621

622

623

624

625

626

627
628

629

630
631

632

633
634

635

636

637

638

639
64O

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

7, --- Executes during object creation, after setting all properties.

function std_dev_CreateFcn(hObject, eventdata, handles)

7,hObject handle to std_dev (see GCBO)

7,eventdata reserved - to be defined in a future version of MATLAB

Y.handles empty - handles not created until after all CreateFcus called

7'Hint: edit controls usually have a white background on Windows.
7' See ISPC and COMPUTER.

if ispc
set(hObject,'BackgroundColor',_white');

else

set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor'));
end

function std_dev_Callback(hObject, eventdata, handles)

7,hObject handle to std_dev (see GCBO)

7,eventdata reserved - to be defined in a future version of MATLAB

7,handles structure with handles and user data (see GUIDATA)

7, Hints: get(hObject,'String ') returns contents of std_dev as text
7, str2double(get(hObject,'String')) returns contents of std_dev as a double

7,--- Executes on button press in dB.

function dB_Callback(hObject, eventdata, handles)

7, hObject handle to dB (see GCBO)
7, eventdata reserved - to be defined in a future version of MATLAB

X handles structure with handles and user data (see GUIDATA)

val = get(handles.select_data,_Value');

if val == I

plot_Callback(hObject, eventdata, handles)
end

7,Hint: get(hObject,_Value ') returns toggle state of dB

7, --- Executes during object creation, after setting all properties.

function dwn_sampCreateFcn(h0bject, eventdata, handles)

7, hObject handle to dwn_samp (see GCB0)
7, eventdata reserved - to be defined in a future version of MATLAB

7, handles empty - handles not created until after all CreateFcns called

7,Hint: popupmenu controls usually have a white background on Windows.

128

F CODE LISTINGS

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

69O

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

Z See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackEroundColor',get(O,'defaultUicontrolBackgroundColor'));

end

Z --- Executes on selection change in dwn_samp.

function handles = dwn_samp_Callback(hObject, eventdata, handles)

Z hObject handle to dwn_samp (see GCBO)

Z eventdata reserved - to be defined in a future version of MATLAB

Z handles structure with handles and user data (see GUIDATA)

Z

ZThis functin get the displayed value on Time Points

Z handles.tsmpl

Z

val = get(hObject,'Value');

str= get(hObject,'String');

opt = 1;

switch str{val};

case 'user'

YAsk user to input number of samples desired

tot = handles.row(2)-handles.row(1);

answer = tot+l;

while answer <= 1 II answer >= tot

prompt = {['Enter number between i:' num2str(tot)]);

d/g_title = 'Time Points';

num_lines= 1;

answer = str2num(char(inputdlg(prompt,dlg_title,num_lines)));

if answer <= 1 II answer >= tot

errordlg(['Please enter number between 1 and '

num2str (tot)]) ;

waitfor(gcf);

end

end

handles.tsmpl = answer;

opt = O;
end

129

F CODE LISTINGS

7O7

708

709

710

711

712

713

714

715

716

717

if opt == 1

handles.tsmpl = str2num(char(str(val))) ;
end

7.plot_Callback(h0bject, eventdata, handles)

guidata(hObj ect ,handles)

7. Hints: contents = get(h0bject, _String J) returns dwn_samp contents as cell array

7, contents{get (h0bj ect, 'Value')} returns selected item from dwn_samp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

IEEE 802.11a Simulation Code

sim_ER_lla.m

7.

%

X

7.

X

7.

X

X

X

X

X

%

X

X

7.

X

X

7.

X

7.

X

7.

7.

7.

X

X

X

SIM_ER_IIA.M

This is the top-level script for IEEE 802.11a PHY layer simulations,

using the mNLAN Toolbox by CommAccess Technologies.

To run a set of simulations, just modify the 'simName' variable below,

so that 'RunParams_<simName>.m ' is the name of the script file

which sets all the simulation parameters for all the simulation runs

to be done in this set.

Some terminology to make sense of the nested iterations:

Calling 'sim_ER_lla.m' once executes a 'simulation set'

A simulation set entails N 'simulationruns.'

Each simulation run simulates a bunch of packets, one by one.

The number of packets in a run is upper-bounded by the 'MaxPkts'

parameter in the 'RunParams_X.m' file. But if 'enough' errors

occur earlier, then the run will stop before sim'ing all MaxPkts

packets. _Enough' is defined by the 'MinErrPkts ' parameter,

and corresponds to the number of pkts with errors, and not just

the number of bit errors, so that one pkt with 1000 bit errors

will not end the run.

The 'vsEbNo' flag, set in the 'RunParams_X.m' file, determines

how noise is calculated. If 'vsEbNo ', then noise is normalized

to produce BER-vs-EbNo curves. If not, then noise is based on

an absolute-scale estimate of the noise on Mars, and the signal

power is the absolute power 'txPwr' (Watts) from 'RunParams_X.m'.

The 'skipDemod' flag allows faster simulation, if you only want

Pkt Error Rate, based on correct reception of the pkt header.

130

F CODE LISTINGS

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
64

65
66

67

68

69

70

71

72

X

%

%

%

%

%

%

%

X

X

X

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

If 'skipDemod', then only the SIGNAL symbol in the header is

demodulated/decoded. The data is ignored. This, together with

specifying a very short 'pktLen', results in much better SiN

times, when only PER is desired.

This script produces a (very large) diary file 'simName.txt'.

After each run in the set, a result table will be dumped into the

diary file. Vne format of the result table is described in the

comments for the dumpResultTable() function. The result tables

are cumulative throughout the diary file, so that the table at

the very end of the diary file summarizes all the results for

all the runs in the entire diary file. This final table should

be extracted into a managably-sized 'Results_simName.m' file

(containing only the one table), and a 'SumAndPlot_simName.m'

or 'SumAndTab_simName.m' script can be customized to produce

whatever table/plot is desired.

For discussion about the calculation of noise power on Mars, read

'abacusl/nasa_scp/Simulations/80211a/PowerDistanceEtc/pwr.pdf'.

and the subsection

'4. PERFORMANCE AT DIFFERENT SITES'

'Performance versus distance between the transmitter and the receiver'

in the 2005 IEEE Aero Conference paper:

'abacusl/nasa_scp/Documents/IEEE_Aero_Conf_2005/PerfEvalllFinal/docfinal.pdf,

2004, Gaylon R Lovelace, New Mexico State University

clear all, format compact, close all;

randn('state',sum(lOO*clock));

simName = 'pwrCheck' ;

diary([simName '.trt']); datestr(now)

skipDemod = O; _ default to normal demod

vsEbNo = O; _ default to SNR determined from ICS Telecom

eval(['RunParams_' simName]); _ sets an Nx9 cell array with all the simulation paramet,

runParamNums = cell2mat(runParams(:,l:8));

nRuns = size(runParams, 1);

magicNums = setMagicNums; Z sets a bunch of 802.11a specific magic numbers

pktCums = zeros(nRuns,l); bitCums = pktCums; errBitCums = pktCums; nErrs = O;

berrPktCums = pktCums; perrPktCums = pktCums; serrPktCums = pktCums; aerrPktCums = pktCm

131

F CODE LISTINGS

73

74

75

76
77

78

79

80

81

82

83

84

85

86

87

88

89

9O

91
92

93

94

95

96

97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

rmsDelays = pktCums; rxPowers = pktCums; estEbNoDBs = pktCums;

for runNdx = [1 : nRuns]

Mbps =

tx_rateMode =

tx_codeRate =

tx_N_BPSC =

tx_N_CBPS =

EbNoDB =

distance =

tx_PwrScalar=

tX nBytes =

maxPkts =

minErrPkt s =

chnlType =

pdpFile =

cell2mat(runParams(nmNdx,2));

Mbps2rateMode(Mbps);

magicNums.RATE_dependent (magicNums.xMODE (tx_rateMode+l),3);

magicNums. RATE_dependent(magicNums.xMODE(tx_rateMode*l), 4) ;

magicNums. RATE_dependent(magicNums.xMDDE (tx_rateMode+l),5) ;
cell2mat(runParams(runNdx,3));

cell2mat(runParams(runNdx,4)) ;

cell2mat(runParams(runNdx,5));

cell2mat (runParams(runNdx,6));

cell2mat(runParams(runNdx,7)) ;
cel12mat(runParams(runNdx,8)) ;

char(runParams(nmNdx,9)) ;

char(runParams(runNdx,lO)) ;

[dateStr, V_m] = readPDP(['..\PDP\' pdpFile '.csv'], chnlType, lOe-9);

V_m = downsamplePDP(V_m, 5, 500).* sqrt(tx_PwrScalar);

Y, Constants for Mars Propagation

c = 3e8;

lambda = c / 5.25e9;

Gr = 1.0;

kBoltz = 1.38e-23;

Teq = 1560;

7. IEEE 802.11a ==> 5.25 GHz

7, Isotropic Rx Antenna

7, Equivalent Noise Temp Kelvins

Y, Convert from E-Field (V/m) to Rxr Input Voltage RMS:

rxVrms = V_m/lO * (sqrt(Gr) * lambda / (pi*sqrt(480)));

if (vsEbNo)

rxVrms = rxVrms' / sqrt (abs (rxVrms' * rxVrms)) ;

end

Z normalize

Z Ensure at least 64 samples in h(t)

if (length(rxVrms)<64); rxVrms = [rxVrms(:)', zeros(I,64)]; rxVrms = rxVrms(l:6,

if (vsEbNo)

Z ix_wave is normd so Es = 1.000 --> reqd_No = 1 / EsNoLinear;

EbNoLinear = I0 ." (EbNoDB / 10);

awgnSigma = sqrt(1 / (EbNoLinear * tx_N_CBPS * tx_codeRate));

awgnSigma = awgnSigma * sqrt(80); _ because is done below, for tx_wave

else

7. Compute noise power on Mars

132

F CODE LISTINGS

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158
159

160

161

162

awgnSigma = sqrt(kBoltz * Teq * 20e6 / 2);
end

rmsDelays(runNdx) = rmsDelayCalc(rxVrms, 1/20e6, 1);

rxPowers (runNdx) = (rxVrms (:) ' * rxVrms (:)) ;
rxVrms = rxVras C:) ;

leadl_ = (rxVrms(l:16)' * rxVrms(l:16));

tailPwr = (rxVrms(iY:end)" * rxVrms(17:end));

total_ = (rxVI1mS(:)' * rxVI_nS(:));

disp('leadPwr tailPwr totalPwr');

disp([leadPwr tailPwr totalPwr]);

for repNdx = [1 : maxPkts]

disp(sprintf ('runNdx=Y.d; AntHt=_.gm; EbNoDB=Y.g;

tx_PSDU

ix_wave

= bitgen(8*tx_nBytes);
= plcp_lla(tx_rateMode, tx_PSDU);

Mbps=Xd; Rep#Xd; Xs', ruxfl

Renormalize tx_wave to SampleEnergy=l.0, rather than OFDMSymbolEnergy=l.0

ix_wave = ix_wave * sqrt(80);

h_t = rxVrms;

AWGNChannel is just one tap.

75_t = zeros(i,64) ; h_t(1) = 1.0;

Fading Model: h(t) = h(t) * Rayleigh ampl * uniform phase

h_t = (sqrt(0.5) * [1 j] * randn(2,1ength(h_t))) .* h_t(:)';

rx_wave =conv(tx_wave, h_t);

7,rx_wave = tx_wave;

For debug purposes, estimate Eb/No

estEbNoLinear = (var(rx_wave) / awgnSigma'2) / (tx_N_CBPS * tx_codeRate / 80);

awgnoise = awgnSigma * sqrt(1/2) * [I j] * (randn(2,1ength(rx_wave)));

rx_wave = rx_wave + awgnoise;

h_t_hat = magicNums. LSE_mtrx * [rx_wave (I :(magicNums. preambLen)). '] ;

Y. Equalization at rxr will require transform of whichever impulse response "

H_k_hat = fft(h_t_hat(l:64));

133

F CODE LISTINGS

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188
189

190

191

192

193

194

195

196

197

198

199

200

201

2o2

203

2o4

205

206

207

X Up to this point, everything is in MKS units (Volts, meters, Watts, etc)

7,The receiver simulation below has no gain control. Except for premultipl:

7,ix_wave by sqrt(80) (to make it apples-to-apples with the noise), everyth:

7,done above is un-done by H_k_hat in the receiver. Scale the rx'd signal

7,together to 'set the receiver preamp gain'.

rx_wave ffirx_wave / sql-t(80)", Y,5_ly for 'real power' --_y_"1+_+_vla"T_S-

signalStart = 320 + 16 + i;

[rx_rateMode, rx_nSyms, rx_nBytes, signalErrFlags, sign_Msg] = ...

processSIGNAL (rx_wave(signalStart :(signalStart+63)), magicNums, H_k_ha_

rx_rateMode = tx_rateMode; 7. for BER purposes, ignore the SIGNAL symbol contents

rx_nBytes = tx_nBytes;

if (-skipDemod)

[serviceBits, dataBits] = processData(rx_wave, rx_rateMode, rx_nBytes, m_

end

if(-skipDemod), nErrs = sum(dataBits -= tx_PSDU); end;

pktCxmm (runNdx) = pktCums (runNdx) + 1;

bitCums (runNdx) = bitCums(runNdx) + 8*tx_nRytes ;

errBitCums (runNdx) = errBitCums(runNdx) + nErrs;

berrPktCums (runNdx) = berrPktCums(runNdx) + (nErrs>O);

perrPktCums(runNdx) = perrPktCums(runNdx) + bitand(signalErrFlags, 1);

serrPktCums(runNdx) = serrPktCums(runNdx) + (signalErrFlags > I);

aerrPktCums(runNdx) = aerrPktCums(runNdx) + ((nErrs>O) II (signalErrFlags:

estEbNoDBs(runNdx) = estEbNoDBs(runNdx) + estEbNoLinear; 7.not in dBs until late]

if(length(signalErrMsg) > 0)

disp([' ' signalErrMsg]

end

statStr = sprintf(' This pkt: %d/7,dbits. ', nErrs, 8*tx_nBytes);

sCa¢Str = [statStr sprintf('Cumulative: 7,d/7,d errPkts & _d/7,d bits.'

disp(statStr);

• aeln

if (aerrPktCums(runNdx) >= minErrPkts)

Have plenty of errors for significance.

break;

end

Skip remaining packets

end _ repNdx

134

F CODE LISTINGS

208

209

210

211

212

213

214

215

216

217

218

219

220

estEbNoDBs (runNdx) = 10 * loglO (estEbNoDBs (runNdx) / pktCums (ru_dx)) ;

7.save(sprintf('7.s_7.s_curveT.02d.mat', simName, chnlType, runParamNums(runNdx,1)) "

resultMatrix = [errBitCums, berrPktCums, perrPktCums, serrPktCums, aerrPktCums,

bitCums, pktCums, rmsDelays, rxPowers, estEbNoDBs];

resultTable = dumpResultTable(resultMatrix, runParams);

_esu_a_le);disp(_ ,i_

end 7. runNdx

diary off ;

Mbps2rateMode.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

function rateMode = Mbps2rateMode(Mbps)

7_MBPS2RATEMODE Convert 802.11aMbit/s to a mWLAN rateMode value

48 54 12 18 24 36 6 9 Mb/s

0 1 2 3 4 5 6 7 rateMode

Z

Subfunction for SIM_ER_11A.M

2004, Gaylon R Lovelace, New Mexico State University

X

table = [

48 54 12 18 24 36 6 9 7, Mb/s

0 1 2 3 4 5 6 7 7, rateMode

];

ndx = find(Mbps = table(l,:));

rateMode = table(2,ndx);

setMagicNums.m

1 function [magicNums] = setMagicNums()

2 y_ETMAGICNUMS Returns a struct full of magic numbers for use in 802.11a Rcvr

3 _ Subfunction for SIM_ER_IIA.M

4 X

5 _ 2004, Gaylon R Lovelace, New Mexico State University

6 X

135

i.....

[

F CODE LISTINGS

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3o

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5o

51

load('tx_wave_preamble') ; tx_wave_preamble = tx_wave_preamble(:) ;

chnlLen = 64; preambLen = length(ix_wave_preamble);

A = convmtx(ix_wave_preamble, chnlLen);

A = A([l:preambLen], :);

7,don't use the zero-prefixed rows at bottom; they overlap with the SIGNAL symbol.

magicNums = struct (...

'pnVector', [...

1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1

1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1

1 1 1 1 -1 1 1 1 -1 1 1 -1 -1

1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1

1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1

-1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1

-1 -1 -1 1 -1 -1 1 -1 1 1 1 1 -1

1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 1

1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1

1 1 1 -1 -1 -1 -1 -1 -1 -1]

'u64', [0:1:63"]

'i_symbol', [8 22 44 58]

'i_data', [1:5 7:19 21:26 28:33 35:47 49:53]

'v_symbol', [I -1 1 1]

'vl', [28:1:53]

'v2', [2:1:27]

'v3', [1:1:26]

'v4', [39:1:64]

'RATE_dependent', [...

6 1 1/2 1 48 24; ...

9 1 3/4 1 48 36;

12 2 1/2 2 96 48;

18 2 3/4 2 96 72;

24 3 1/2 4 192 96;

36 3 3/4 4 192 144;

48 4 2/3 6 288 192;

54 4 3/4 6 288 216], ..

'xMODE', [7 8 3 4 5 6 1 2]

'am', [l./sqrt([l 1 2 2 i0 I0 42 42])]

'preambLen', preambLen

'LSE_mtrx', inv(A'*A)*A' ...

);

7. 'D_hat', [zeros(I,53)]

7. 'S_hat', [zeros(i,48)]

7, 'kpn', [1], ...

136

F CODE LISTINGS

52

53

54

55

56

57

Z 'u80', [80]

7., o--

7,'ix_wave_preamble ', ix_wave_preamble

1

2

3

4

readPDP.m

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

function [dateStr, V_m] = readPDP(fileName, grepTxt, Ts)

7JtEADPDP Read a delay profile from an ICS Telecom CSV file

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

X

[dateStr, V_m] = readPDP(fileName, grepTxt, Ts)

opens the named file, and reads the comma separated data from

all lines which begin with the text string GREPTXT.

DATESTR returns the timestamp from the first line of the file.

V_M returns the E-Field Intensity profile, converted from dBuV/m

into linear units of Volts/meter. Zeros are inserted for all

missing time intervals, including those prior to the first

tap in the data. The elements of V_M correspond to Times-of-

Arrival of [0 : Ts : maxTime] where maxTime is the maximum ToA

in the file data.

An error will result if any of the Times-of-Arrival given in

the file are not an integer multiple of Ts.

The CSV file should match the following six-column format:

5/10/2004 10:17

Subscriber,#,X,Y,FS dBV/m, ToA s

rx20ml,6,102319.2031,92928,102,0.07

rx20ml,6,102319.2031,92928,99,0.1

rx20ml,6,102319.2031,92928,100,O.11

rxlOOml,4,102319.2031,92855.20313,102,0.31

rxlOOml,4,102319.2031,92855.20313,93,0.32

rxlOOml,4,102319.2031,92855.20313,99,0.33

rx100ml,4,102319.2031,92855.20313,100,O.35

For this example, READPDP(fileName, 'rxlOOml', lOe-9) will return:

DATESTR = '5/10/2004 10:17';

V_M = 36xi array = [zeros(l,31), i0"(I02/20), 10"(93/20), 10"(99/20), O, 10"(100/20) "

TOA_S = 36xl array = [0 : 10e-9 : 350e-9]';

137

F CODE LISTINGS

35

36

37

38

39

40
41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57
58

59

6O

61

62

63

64

65

66

67

68
69

70
71

72

73

74

75

76

77
78

79

7,Subfunction for SIM_ER_IIA.M

7.

7. 2004, Gaylon R Lovelace, New Mexico State University

Z

lid = fopen(fileName);

dateStr = fgetl(lid);

dateStr = dateStr(l:(end-5));

fgetl(lid); fgetl(lid); 7. skip blank line & column headers

state = 2;

k = O;

data = repmat([-i -i], 8, 1);

while(state > 0)

oneLine = fgetl(fid);

if (oneLine == -I)

state = O;

elseif (isempty(oneLine)

else

end

end

7. create 'empty' data array

7. do nothing; skip blank lines

c = find(oneLine == ',');
txt = oneLine(l:(c(1)-l));

if (strcmpi(txt, grepTxt))

k = k + 1;

state = 1;

data(k,l) = str2num(oneLine((c(4)+l):(c(5)-l)));

data(k,2) = str2num(oneLine((c(5)+l):end));

elseif (state _ 1)

7.7.did have 'matching' lines, but now are past them

state = O;

end

fclose(lid);

data = data(l:k,:);

t_over_T = 1 + round((data(:,2) * le-6) / Ts);

V_m = zeros(max(t_over_T), 1);

V_m(t_over_T) = i0.'((data(:,l) / 20) - 6);

return

138

F CODE LISTINGS

80

81

82

83

84

85

86

87

88

89

90

91
92

93

94

95

96

7,7,Example of how to use this fctn

lambda = 3e8 / 5.25e9;

kBoltz --1.38e23;

Teq ffi1560;

ix_wave = plcp_lla(rateMode, PSDU);

1;x_wave = tx_wave * sqrt(80);
pdp = readPDP(fileName, tag, lOe-9);

pdp ffipdp(min(find(pdp)) :end) ;

7, IEF_ 802.11a _> 5.25 GHz

Equivalent Noise Temp Kelvins

Itead Y/m profile from file.

Discard leading zeros

% h(t) ffi pdp * Rayleigh ampl * uniform phase

h_t = (sqrt(0.5) * [1 j] * randn(2,1ength(pdp)))., pdp;

h_t = h_t * (lambda / (pi*sqrt(480)));

rx_wave = cony(tx_wave, h_t);

awgnSigma = sqrt(kBoltz * Teq * 20e6 / 2);

awgnoise = awgnSigma * sqrt(I/2) * [l;j] * (randn(2,1ength(tx_wave)));

rx_wave = rx_wave + awgnoise;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

downsamplePDP.m

1 function Y_m = downsamplePDP(raw_V_m, M, N)

2 7J)OWNSAMPI_IPDP Filter & downsample a delay profile from ICS Telecom

3 7. V_m = readPDP(raw_V_m, M, N) takes a PDP from readPDP(), and

4 7. lowpass filters it with an Nth order filter, and downsamples it

7. by a factor of M. V_m is normalized to have total energy equal

7. to that of raw_V_m.

7.

7. Subfunction for SIM_ER_IIA.M

7.

7. 2004, Gaylon It Lovelace, New Mexico State University

7.

myFilt = firl(N, 1/M);

first = round(min(find(raw_V_m)) + (N/2));

last = round(first + length(raw_V_m));

V_m = filter(myFilt, 1, [raw_V_m; zeros(first+N/2,1)]);

V_m = V_m(first:M:last);

V_m = V_m * sort((raw_V_m' * raw_V_m) / (V_m' * V_m));

139

F CODE LISTINGS

9

10

11

12

13

14
15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

processData.m

1 function [serviceBits, dataBits] = processData(rx_wave, rx_rateMode, rx_nBytes, magicNum:

2 7_ROCESSDATA Process the 802.11a data symbols

3 7.RX_WAVE is the entire received baseband signal, including preamble & SIGNAL symbol.

4 7. The actual data symbols start at sample 401.

5 7. 320 samples = skip over the PLCP Preamble (16us * 20MHz);

6 7. 80 samples skips over the SIGNAL symbol (4.0us * 20MHz)

7 7. 1 = MATLAB index is one-based & we want first sample AFTER the SIGNAL symbol

8 7. MAGICNUMS = setMagicNums();

7. H_k = 64-sample FFT of multipath channel impulse response

7. RX_RATEMODE, RX_NBYTES should come from the SIGNAL symbol, or from knowledge

7. of the transmitter.

7. RX_RATEMODE should be

7.

7.

7.

Z

7.

7.

Z

O=48Mbps, 1=54, 2=12, 3=18, 4=24, 5=36, 6=6, 7=9Mbps

These are just bits R1-R4 of the SIGNAL field

magicNums .xMODE can sort these into ascending bitrate

Subfunction for SIM_ER_IIA.M

2004, Gaylon R Lovelace, New Mexico State University

rx_codeRate = magicNums.RATE_dependent(magicNums.xMODE(rx_rateMode+l),3);

rx_N_BPSC = magicNums.RATE_dependent(magicNums.xMODE(rx_rateMode+l),4);

rx_N_CBPS = magicNums.RATE_dependent(magicNums.xMODE(rx_rateMode+l),5);

rx_AMref = magicNums.am(magicNums.xMODE(rx_rateMode+l));

rx_nSym = ceil((16 + 8*rx_nBytes + 6) / rx_codeRate / rx_N_CBPS);

demod_seq=[]; soft_seq=D ; stepsize=l;

kpn = 1;

samplesPerSymbol = 80;

npt = 320 + 16 + I; 7.skip preamble & SIGNAL symbol

for k=l:rx_nSym

D_hat=zeros(1,53); S_hat=zeros(1,48);

kpn = kpn + I;

npt = npt + samplesPerSymbol;

nn = npt + magicNums.u64;

z = rx_wave(nn);

y = fft(z) ./ H_k(:).';

D_hat (magicNums. vl) = y (magi cNums, v2) ;

D_hat (magicNums.v3) = y(magicNums,v4) ;

S_hat = D_hat (magicNums.i_data);

W = sum(y(magicNums.i_symbol) .* magicNums.v_symbol) * (magicNums.pnVector(_

140

F CODE LISTINGS

44
45

46

47

48

49

50

51

52

53

54

Qbits=4; _ number of bits for the quantizer

[Brx soft] = DeMod_lla(rx_N_BPSC, Qbits, S_hat/rx_AMref);

demod_seq=[demod_seq Brx]; _size(demod_seq)

soft_seq=[soft_seq soft];

end

Rcv,bits = Demod_post_lla(rx_codeRate, rx_N_BPSC, rx_N_CBPS, demod_seq, soft_seq)

serviceBits = Rcv_bits(l:16);

dataBits = Rcv_bits(17:(16+8*rx_nBytes));

processSIGNAL.m

1 function [rx_rateMode, rx_nSyms, rx_nBytes, signalErrFlags, signalErrMsg] = processSIGNAL

2 7_uROCESSSIGNAL Process the 802.11a SIGNAL symbol

3 _ SIGNALsym should probably be 64 simulation samples, beginning at

4 _ sample number 320+16+1.

5 _ 320 samples = skip over the PLCP Preamble (16us * 20MHz);

6 _ 16 samples skips over the cyclic prefix of the SIGNAL symbol (0.8us * 20MHz)

7 _ 1 = MATLAB index is one-based & we want first sample AFTER the cyclic prefix

8 _ MAGICNUMS = setMagicNums();

9 _ H_k = 64-sample FFT of multipath channel impulse response

I0 _ TX_RATEMODE, TX_NBYTES are compared against contents of SIGNAL sym, to find errs

II _ TX_RATEMODE should be O=48Mbps, 1=54, 2=12, 3=18, 4=24, 5=36, 6=6, 7=gMbps

12 X These are just bits RI-R4 of the SIGNAL field

13 _ magicNums.xMODE can sort these into ascending bitrate

14 _ SIGNALERRFLAGS is an integer carrying a 3-bit field:

15 _ OxOl => parity error in SIGNAL symbol

16 X Ox02 => rx_rateMode -= tx_rateMode

17 _ Ox04 => rx_nBytes "= tx_nBytes

18 _ SIGNALERRMSG is a text string conveying the errors flagged by SIGNALERRFIAGS

19

20 _ Subfunction for SIM_ER_IIA.M

21

22 _ 2004, Gaylon R Lovelace, New Mexico State University

23 X

24

25

26

27

28

29

y = fft(SIGNALsym) ./ H_k(:).';

D_hat = zeros (I, 64) ;

D_hat (magicNums. vl) = y (magicNums. v2) ;

D_hat (magicNums. v3) = y (magicNums.v4) ;

S_hat = D_hat (magicNums. i_data) ;

time/freq mapping per 802.11a Fig 109

dunno why it's done in two steps

skip elements from the NULL subcarrs

141

F CODE LISTINGS

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

S_signal = round (real(S_hat));

[rx_rateMode rx_nSyms rx_nBytes rx_prtchkpass] = parse_signal_lla(S_signal);

tx_codeRate = magicNums.RATE_dependent(magicNums.xMODE(tx_rateMode+l) ,3);

tx_N_BPSC = magicNums .RATE_dependent(magicNums.xMODE(tx_rateMode+l) ,4);

tx_N_CBPS = magicNums.RATE_dependent (magicNums.xMODE (tx_rateMode+l),5);

tx_nSyms = ceil((16 + 8*tx_nBytes + 6) / tx_codeRate / tx_N_CBPS);

7,Just confirm that mWLAN:parse_signal_11aO uses the same nBytes-->nSymbols

7,formula that I just wrote above. If nBytes & rateMode are both right, then

7,nSymbols should also agree.

if ((rx_rateMode == tx_rateMode) && ...

(rx_nSyms -= ceil((16 + 8*rx_nBytes + 6) / tx_codeRate / tx_N_CBPS))

error(['nSymbols calc mismatch: rx_nSyms=' num2str(rx_nSyms) ...

' ; rx_nBytes=' num2str(rx_nBytes) ' ; rx_rateMode=' num2sl
end

errParity = (rx_prtchkpass -= 1);

errRateMode = (rx_rateMode -= tx_rateMode);

errNBytes = (rx_nBytes -= tx_nBytes);

signalErrFlags = errParity + 2*errRateMode + 4*errNBytes;

signalErrMsg = ,,;

signalValuesErr = ((rx_rateMode -= tx_rateMode)

if (errParity)

signalErrMsg = 'Parity. ';
end

if (errRateMode)

signalErrMsg = [signalErrMsg '
end

if (errNBytes)

signalErrMsg = [signalErrMsg '
end

if (signalErrFlags)

signalErrMsg = ['SIGNAL symbol error:
end

[((rx_nSyms-= tx_nSyms) () (

rateMode: tx=' num2str(tx_rateMode) ' rx=

nBytes: tx=' num2str(tx_nBytes) ' rx=' nm

' signalErrMsg];

rmsDelayCalc.m

1 function [rmsDelay, meanExcess] = rmsDelayCalc(profile, Ts, isVoltage)

2 7,RMSDELAYCALC Calculates multipath delay stats for Delay Profile

3 7, [rmsDelay, meanExcess] = rmsDelayCalc(profile, Ts, isVoltage)

142

F CODE LISTINGS

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28
29

3O

31

7.

7.

7.

7.

7.

7.
7.

7.

7.

7.

7.

7.

takes a delay profile and calculates the mean excess delay and

the RMS delay spread.

If ISVOLTAGE is FALSE or omitted, then the delay profile is

taken to be power vs time. If ISVOLTAGE is TRUE, then the

profile is taken as voltage (or field strength, etc) vs time.

In either case, the profile is assumed to be on a linear scale,

rather than dB, and uniformly sampled at rate 1/Ts.

Subfunction for SIM_ER_IIA.M

2004, Gaylon R Lovelace, New Mexico State University

firstNonzero = min(find(profile));

taus = [0 : 1 : length(profile)-I]'

tau_O = taus(firstNonzero) ;

taus = taus - tau_O;

.* Ts;

if ((nargin<3) II (isVoltage-=O))

pdp = profile.'2;

else

pdp = profile;

end

meanExcess = sum(pdp(:) .* taus) / sum(pdp(:));

tauSqr_bar = sum(pdp(:) .* taus.'2) / sum(pdp(:));

rmsDelay = sqrt(tauSqr_bar -meanExcess'2);

dumpResultTable.m

function resultTable = dumpResultTable(resultMatrix, runParams)

7j)UMPRESULTTABLE Produce a wide NxX string matrix with results from a set of sim'n runs

A simulation set consists of N simulation runs.

1

2

3

4 Z Each simulation run consists of manydata packets.

5 7. Each run may in a set may do a different number of pkts.

6 _ Each run ends up producing ten scalar results,

7 Z so the N runs, together, produce the N-x-lO results matrix,

8 7. which is described column-by-column as:

9 Z resultMatrix = [...

I0 % errBitCums, ... _ Ol _ Total number of bad data bits

II Z berrPktCums Z 02 Z Number of pkts with >= I bad data bit

12 % perrPktCums 7. 03 _ Number of pkts with bad SIGNAL parity

143

F CODE LISTINGS

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

%

X

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.

7.
7.

7.

7.

7.

7.

7.

];

serrPktCums, .

aerrPktCums, .

bit Cures,

pktCums,

rmsDelays,

rxPowers,

estEbNoDBs, .

7. 04

7. 05
7. O6
7. 07
7. O8
7. 09

• 7. 10

All the 'instructions' for

a big N-x-9 cell array:

runParams = { ...

CurveNum

Mbps,

EbNoDB,

Distance,

pktLen,

txPwr,

MaxPkts, 7.

MinErrPkt s, 7.

Channel, 7.

pdpFile 7.

};

%017.

o °°

7.037.

7.047.

7.o5Z

7.067.

07 7.

08 7.

09 7.

io 7.

7. Number of pkts with bad SIGNAL contents

7. Number of pkts with any of above 3 errs

7. Total number of data bits transferred

7. Total number of pkts transferred

7. RMS Delay Spread for the channel used

Avg rx/tx power ratio for the channel used

7. Avg rx'd Eb/No for the channel & rateMode used

a simulation set are contained in

(must be cell array so last two columns can be strings)

Allows e.g. 24 runs to plot as 3 BER curves each 8 points

7. 02 7. Used to spec which 802.11a rateMode

Independent variable for plots. Set zero if plotting vs dist

Independent variable for plots. Set zero if plotting vs EbNo

User data bytes per 802.11a packet

Scales the ICS Telecom PDP (assumed to be for 1.0 W tx pwr).

Stop after M pkts, even if found few or no errors

Stop early, if find this many pkts with >= 1 error.

'Subscriber' strin E ID from ICS Telecom PDP *.csv file

Filename of ICS Telecom PDP *. csv file

1 2 3 4 5 6 7 8 9 i0

beCums pbeCums ppeCums pseCums paeCums nBits nPkts BER rmsDelay rxPower est]

Subfunction for SIM_ER_IIA.M

2004, Gaylon R Lovelace, New Mexico State University

7_resultMatrix = [errBitCums, berrPktCums, perrPktCums, serrPktCums, aerrPktCums, bitCums,]

nRuns = size(resultMatrix, 1);

if (nRuns "= size(runPar_ms, 1)); error('RESULTMATRIX, RUNPARAMSbe same height.');

runParamNums = cell2mat(runParams(:,[l:8]));

resultMatrix(:,8) = resultMatrix(:,8) * le9; 7. Display rmsDelaySpread in nanoSecs

7. don't 7. resultMatrix(:,9) = resultMatrix(:,9) * le9; 7. Display rxPower in nanoWatts

nonzeroBits = find(resultMatrix(:,6));

bets = resultMatrix(:,6); 7. BERs default to zero (for runs not completed, etc)

bers(nonzeroBits) = resultMatrix(nonzeroBits,1) ./ resultMatrix(nonzeroBits,6);

resultTable = ['7. ' datestr(now)];

resultTable = strvcat(resultTable,

resultTable = strvcat(resultTable,

'7. 1 2 3 4 5 6

'7. beCums pbeCums ppeCums pseCums paeCums nBits nP]

144

F CODE LISTINGS

58 formatStr = 'Z8dT,8dZ8dT,8dT,SdT,9dZSdZ10.3g7,9. If 7,10.3g7,8.IfZl0dZ6dZ8.2fX9.4g7,9.4gZgdT,9dZ9dZl3:

59 for k = [1 : nRuns]

60 tmpStr = ['''' char(runParams(k,9)) ''''];

61 thisLine = sprintf (formatStr, resultMatrix (k, [I:7]), bers (k), resultMatrix (k, [8:10"

62 resultTable = strvcat(resultTable, thisLine);

63 end

64

RunParams_BERDistAvg.m

This last file is one sample parameter file. Similar files are used to define all the different

simulation sets we did This one in particular sets up a long set of simulations to find

BER-vs-(Tx-Rx Distance) averaged over several spots at the Gusevl, Site1 location,

1 runParams = {

2 Z 1 2 3 4 5 6 7 8

3 Z CurveNum Mbps EbNoDB Distance txPwr pktLen MaxPkts MinErrPkzs

4 1 12 0 i000 0.001 128 500 I0000

5 1 12 0 500 0.001 128 500 I0000

6 1 12 0 200 0.001 128 500 I0000

7 1 12 0 100 0.001 128 500 10000

8 1 12 0 50 0.001 128 500 I0000

9 1 12 0 20 0.001 128 500 10000

10 %

11 2 12 0 1000 0.001 128 500 10000

12 2 12 0 500 0.001 128 500 10000

13 2 12 0 200 0.001 128 500 10000

14 2 12 0 100 0.001 128 500 10000

15 2 12 0 50 0.001 128 500 10000

16 2 12 0 20 0.001 128 500 10000

17 Z

18 3 12 0 1000 0.001 128 500 10000

19 3 12 0 500 0.001 128 500 10000

20 3 12 0 200 0.001 128 500 10000

21 3 12 0 100 0.001 128 500 10000

22 3 12 0 50 0.001 128 500 10000

23 3 12 0 20 0.001 128 500 10000

24 Z

25 4 12 0 1000 0.001 128 500 10000

26 4 12 0 500 0.001 128 500 10000

27 4 12 0 200 0.001 128 500 10000

28 4 12 0 100 0.001 128 500 10000

29 4 12 0 50 0.001 128 500 10000

9

Channel

'rxlOOOml'

'rx5OOml'

'rx2OOml'

'rxlOOml'

'rx5Oml _

'rx2Oml'

'rxlOOOm2'

'rx5OOm2 J

'rx2OOm2 '

rxlOOm2 '

'rx5Om2'

'rx2Om2'

'rx IO00m3 '

'rx5OOm3 '

'rx2OOm3 '

'rxlOOm3'

'rx5Om3'

'rx2Om3'

'rxlOOOm4'

'rx5OOm4'

'rx2OOm4'

'rxlOOm4'

'rx5Om4'

i0

pdpF:

'DistA _

'DistA _

'DisZ_

'DistA"

'DistA"

'DistA ,

'DistA'

'DistA"

'DistA"

'DistA'

'DistA"

'DistA_

'DistA'

'DistA_

'DistA_

'DistA"

'DistA"

'DistA'

'DistA'

'DistA"

'DistA"

'DistA'

'DistA"

145

F CODE LISTINGS

30 4 12 0 20 o. 001

31 };

32 skipDemod = O; Y,demodulate data to find BER

33 vsEbNo = O; Y,SNR determined from ICS Telecom
34

128 500 I0000 'rx2Om4' 'DistA,

1

2

3

4

IEEE 802.11b Simulation Code

MultipathEbNoSim.m

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

Y2rogram to simulate BER as a function of Eb/No using Martian Multipath

_J)ata

Z IEEE 802.11a/b/g Toolbox, v.3.02, March 2004

Z All rights reserved, (c) CommAccess Technologies, 2001-2004.

Z Modified by Dr. Deva K. Borah, NMSU

Z Modified by AnirudhDaga, NMSU

clear;format compact; close all;clc;

opt_mode=l;Z opt_mode = 1 for 1Mbps, 2 for 2 Mbps, 3 for 5.5 Mbps, 4 for Ii Mbps

rake = O;

barker=J1 -I I I -1 1 11 -1 -1 -I];

CCK_PBCCtx=O;_ 0 for CCK, 1 for PBCC

cckdemodtype=l; _0 for suboptimal CCK demod, 1 for near-optimal

coherent=O;_ 1 for coherent demod, 0 for otherwise

p=18;Z p = the number of sample per channel symbol

chiprate=ll; Z Mega cps

deltaT=I/chiprate/p;

nsample=p;

72ulse shaping sequence

Nspan=5;

ns_p;

alpha=0.35;

hTx=SRRC(alpha,ns,Nspan);

hRx=hTx/nsample; Z This scaling operation is simply for the purpose of plotting.

ZZXZZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZZZXZZZXXZZZZZZZZZZZZZZZZZZZZZZZZXXZZXXXZZZZ

Z ICS TELECOM POWER DELAY PRDFILE INCORPORATION Z

ZZZZZZZZZZZZZZZZXZZZZZZZZZZZZZZZZZZZZXZZXXZZZZZZZZZZXZZZZZZZZZZZZZZZZXZZXZZZZZ

tl = 'C:\DocumentsPapers\NASA Documents\PDPSimulationDataOct2OO4\Gusev3_Sitel_lOOm.txt';

146

F CODE LISTINGS

34

35

36

37

38

39

4o

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

76

77

78

7, t2 = 'C: \DocumentsPaperskNASA Documents\PDPSimulationDataOct2OO4\Gusev3_Site2_lOOm. txt' ;

Y, t3 = 'C:\DocumentsPapers\NASA Documents\PDPSimulationDataOct2OO4\Gusev1_Sitel_lOOm.txt';

files = strvcat(tl);

for kk = 1:size(files,I)

PowerDelayProfile = dlmread(files (kk, :)) ;

ImpulseResponse = PDP2IMP(Po.erDelayProfile) ';

ImpulseResponse = Missing_Time_Insertion(ImpulseResponse) ;

7.)._Z7._;)._._.)._.7.Z).ZZZ_););Z_.).).hZZ_ZZZ_ZZZZ7.ZZZ7.ZZZ_ZZZ7._7.ZZ7.ZZ_ZZZ_7._Z_7.ZZZZ_

7, 0VERSAMPLING THE MULTIPATH CHANNEL IMPULSE RESPONSE 7.

7.7.X7._._7._.7.7._._.X_7.7._.X__7.7.7._._.__.X_XX_7.X_X_X____X_X_7.____________________X______X____X

ImpulseResponse = (ImpulseResponse (:, I)/norm(ImpulseResponse (:, I))) ' ;

hf I = resample (ImpulseResponse, 99,50, I) ;

hfl = hfl/norm(hfl);

IRLength = length(ImpulseResponse) ;

if (opt_mode>4), opt_mode=4; end

if(opt_mode<l), opt_mode=l; end Y, protection

7. start waveform generation

L_S=I; Y, 1 for the lon E preamble, 0 for the short preamble

if (opt_mode=l) Rate_modetx=10; end;

if (opt_mode--=2) Rate_modetx=20; end;

if (opt_mode==3) Rate_modetx=55; end;

if (opt_mode-----4) Rate_modetx=ll0; end;

if (opt_mode==3)

[codevec55,bitvalvec55,phchodd55,phchevn55,phvec55]=cck55demodsupport;

end;

if (opt_mode==4)

[codevec, bitvalvec,phchodd,phchevn,phvec]=ccklIdemodsupport;

end;

if (CCK_PBCCtx _- 1)

phO=pi;

end 7. for (PBCC) BER simulation purpose

nByte=100;

snrdb = I000;

for xx = l:length(snrdb)

tic

bitcounter=0;

wrongcounter=0;

147

F CODE LISTINGS

79

80

81

82

83

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

IO0

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

for yy = 1 :1000

tic

files (kk, :)

nBittx=nByte*8;

PSDU=BitGen (nBittx) ;

PSDULengt_ = length (PSDU) ;

b23= [0 CCK_PBCCtx] ;

7.Generate the scrambled spread data

[IQsequence,xBit,phO] = PLCP_llb(opt_mode,L_S,PSDU,b23) ;

if (rake _ I)

TxdSpreadPreamble = IQsequence(1 :128.11) ;
end

nIQ=length (IQsequence) ;

if (b23 (2) ==1)

tap_lib=[1 0 1 1 0 1 1 1 1 1 1 1 0 1];

VitrB_ini (tap_ 1 lb)
end

7.Generate Rayleigh fading

rayleigh_facling = (I/sqrt(2))*(randn(size(hfl)) + j*randn(size(hfl)));

hf = hfl.*rayleigh_fading;

CIR = conv(conv(hf,hTx),hRx);

CIR = CIR(10*ns+l:ns:length(CIR)-10*ns);

Z generate Tx waveform

S=zeros(1,ns*nIQ);

S(l:ns:ns*nIQ)=IQsequence;

S=conv(S,hTx);

Sl=conv(S,hf);

Z Add noise to signal samples

nx=length (Sl) ;

if (opt_mode==l) noisestd=sqrt(p*ll/(2*lO'(snrdb(xx)/lO))); end;

if (opt mode==2) noisestd=sqrt(p*ll/(4*lO'(snrdb(xx)/lO))); end;

if (opt_mode==3) noisestd=sqrt(p/(lO'(snrdb(xx)/lO))); end;

if (opt mode==4) noisestd=sqrt(p/(2*lO'(snrdb(xx)/lO))); end;

wi=randn(1,nx)*noisestd;

wq=randn(l,nx)*noisestd;

148

F CODE LISTINGS

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
165

166

167

168

if (opt_mode _ I) S1 = Sl + wi; else S1 = Sl+(wi+j*wq); end;

Y. Receiver section starts

Sr=conv(S1, hltx) ;

ExPar_llbl

rcvl = Sr(lO*ns+l :ns: length(Sr)-10*ns) ;

nr=iength (rcvl) ;

if (rake == 1)

RxdSpreadPreamble = rcvl (1 : length (TxdSpreadPreamble) +length (rcvl) -nIQ) ;

hhat = ChannelEst_NoFor (RxdSpreadPreamble,TxdSpreadPreamble) ;

[maxval,maxind]--max(hhat);

k_header_end = (144+48).11+I;

elseif (rake = O)

[maxval,maxind] = max(CIR) ;

k_header_end= (144+48) .11+1+ (maxind-1) ;

end

rcv3=rcvl(k_header_end:length(rcvl));

if ((Rate_modetx==55)&(cckdemodtype==l))

if (rake == 1)

d_rcv = CCK55DemodRake_NoFor(rcv3,nBittx,codevec55,bitvalvec55

phchodd55,phchevn55,phvec55,phO,PSDULength,hhat);
elseif (rake == O)

d_rcv = cck55demod(rcv3,nBittx,codevec55,bitvalvec55,phchodd55

phchevn55,phvec55,phO);
end

elseif ((Rate_modetx==110)&(cckdemodtype==l))

if (rake -----I)

d_rcv=CCKllDemodl_ke_NoFor(rcv3,nBittx,codevec,bitvalvec

phchodd,phchevn,phvec,phO,PSDULength,hhat);
elseif (rake == O)

d_rcv=ccklldemod(rcv3,nBittx,codevec,bitvalvec,phchodd

phchevn,phvec,phO);

end

else

if (rake == 1)

149

F CODE LISTINGS

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

d_rcv=Demod_llbv4(Rate_modetx,nBittx,phO,CCK_PBCCtx,coherent

rcv3,hhat,PSDULength);
elseif (rake == O)

d_rcv=Demod_llbv2(Rate_modetx,nBittx,phO,CCK_PBCCtx,coherent,rcv3);

end

end;

dd_rcv=Descrambler_llb(d_rcv(l:l:nBittx));

Err=(dd_rcv(l:nBittx)-=PSDU);
Errorgnt=sum(Err);

bitcounter = bitcounter + nBittx;

wrongcounter = wrongcounter + ErrorKnt

bet = _rongcounter/bitcounter

YY
snrdb(xx)

if (snrdb(xx)<lO _ _rrongcounter >= 20000)
break;

end

if (snrdb(xx)>lO _ _rrongcounter >= 10000)
break;

end

toc

end

finber(xx) = ber;

toc

end

BitErrRate(kk,:) = finber;

end

mainprog_llb_mtd_st.m

1 Z Program to simulate BERas a function of distance using Martian multipath data

2

3 Z IEEE 802.11a/b/g Toolbox, v.3.02, March 2004

4 Z All rights reserved, (c) CommAccess Technologies, 2001-2004.
5

6 Z Modified by Dr. Deva K. Borah, NMSU

7 Z Modified by Anirudh Daga, NMSU
8

9 clear all; format compact; close all;clc;

i0 barker=[l -I 1 1 -1 1 1 1 -I -I -I];

11 rake = 1;

150

F CODE LISTINGS

12

13

14

15

16

17
18

19

20

21

22

23
24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

opt_mode=4;7, opt_mode -- 1 for 1 Mbps, 2 for 2 Mbps, 3 for 5.5 Mbps, 4 for II Mbps

CCK_PBCCtx--O;7. 0 for CCK, 1 for PBCC

cckdemodtype=l; 7.0 for suboptimal CCK demod, I for near-optimal

coherent=O;7. 1 for coherent demod, 0 for otherwise

p=18;7, p = the number of sample per channel symbol

chiprate=ll; 7. Mega cps

deltaT=l/chiprate/p;

nsample=p;

7. Pulse shaping sequence

Nspan=5;

ns=p;

alpha=O. 35;

hTx=SRRC (alpha, ns, Nspan) ;

hRx=hTx/nsample;

7.7.X.h7.7.7.7.7.7.7.7._7.7.7.7.__Z7.7.*h7.7.7.7.7._7.7.7._7.7_h___7.__X7._7._7.7.7.7.7.7._7.7._7.7.7.7.7.77.7.7.7.7._7.__7.__7.7.7.7.

7, ICS TELECOM POWER DELAY PROFILE INCORPORATION 7.

XXXX7.7.X7._*h7.7.7.X7.7.7.X7.7.*h7.X7.7.7.X7.X7.7.7.:1*7.7*7._7.7.7._7._h_7.7.XX_X7.7._X_7.7.7.7.7.7.X7.7._7..h_7.__XX7.7.7.7.7.

PowerDelayProfile = dlmread('C:\DocumentsPapers\NASA Documents\...

PDPSimulationDat aOct2OO4\Gusevl_Sitel_ lOOm. txt ') ;

[ImpulseResponse, TruePower] = PDP2IMPDistance (PowerDelayProfile) ;

ImpulseResponse = Missing_Time_Insertion (ImpulseResponse) ;

ImpulseResponse = ImpulseResponse(:,I) ' ;

7.7._7.7.7.7.Z7.ZZ7.7.7.7.Z7.7.7.7.7.7.7.Z7.7.7.7.7.7.7.ZZ7.7._Z7.7.7.Z7._7.7.ZZ7.Z7.7.7.7.Z7._7.Z7.7.ZZ7.7.7.7.7.7.Z7.7.7.7.7.7.7.7.7.7.7.

7. DVERSAMPLING THE MULTIPATH CHANNEL IMPULSE RESPONSE 7,

__7.7.7._7.7.7.Z7.7.7.7.7.7.__7.Z7.7._7.7.7.Z7.7.7.7.7.7.7._7.7.7.7.7._7._7._Z_7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.Z7.7._Z7._7.7.7.7.7._7.7.7.7.

hf I = resample (ImpulseResponse, 99,50, I) ;

hf I = (norm(ImpulseResponse)/norm(hfl)). *hfl;

IRLength = length(ImpulseResponse) ;

if (opt_mode>4), opt_mode--4; end

if(opt_mode<l), opt_mode=l; end 7. protection

if (opt_mode--=1) Rate_modetx=lO; end;

if (opt_mode==2) Rate_modetx=20; end;

if (opt_mode==3) Rate_modetx=55; end;

if (opt_mode==4) Rate_modetx=llO; end;

if (opt_mode==3)

[codevec55,bitvalvec55,phchodd55,phchevn55,phvec55]=cck55demodsupport;

end;

if (opt_mode==4)

151

F CODE LISTINGS

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

[codevec, bitvalve c, phchodd, phchevn, phvec] =cckl ldemodsupport ;

end;

if(CCK_PBCCtx == 1),

phOffipi;

end _, for (PBCC) BER simulation purpose

nByte=500;
bit countel_O;

_ongcounte_O;

for yy = 1 :5000

randn ('state ',sum (lO0*clock))

tic

7. start waveform generation

L_S=I; Z 1 for the long preamble, 0 for the short preamble

nBittx=nByte*8;

PSDU=BitGen (nBittx) ;

PSDULength = length(PSDU) ;

b23--[0 CCK_PBCCtx] ;

[I Osequence, xBit, phO] =PLCP, 1 Ib (opt_mode, L_S, PSDU, b23) ;

TxdSpreadPreamble = IQsequence(1 :128.11) ;

nIQ=length (IQsequence) ;

if (b23 (2) ==1)

tap_lib=[1 0 1 1 0 1 1 1 1 1 1 1 0 1];

VitrB_ini (t ap_l Ib)

end

ZGenerate Rayleigh fading

rayleigh_fading = (I/sqrt(2))*(randn(size(hfl)) + j*randn(size(hfl)));

hf = hfl.*rayleigh_fading;

CIR = conv(conv(hf,hTx),hRx);

CIR = CIR(lO*ns+l:ns:length(CIR)-10*ns);

Z generate Tx waveform

S=zeros(1,ns*nIQ);

S(l:ns:ns*nIQ)=IOsequence;
S=conv(S,hTx);

S=sqrt(le-3)*S;

Sl=conv(S,hf);

nx=length(S1);

152

F CODE LISTINGS

102

103

104

105
106

107

108
109

110

111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126
127

128

129

130
131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Add noise to signal samples

sigma = 4.8663e-7;

wi--randn(l,nx)*sigma; wq--randn(l,nx)*sigma;

if (opt_mode == 1) $2 = S1 + wi; else $2 = S1 + (wi+j*wq);

Y_eceiver section starts

Sr=conv(S2,hRx);

rcvl = Sr(lO*ns+1:ns:length(Sr)-lO*ns);

if (rake _ I)

RxdSpreadPreamble = rcvl(l:length(TxdSpreadPreamble)+length(rcvl)'nIQ-1);

hhat = ChannelEst_NoFor(RxdSpreadPreamble,TxdSpreadPreamble);

[maxval,maxind]--max(hhat);

elseif (rake == O)

[maxval,maxind] = max(abs(CIR));

end

if (rake == O)

k_header_end=(144+48)*ll+l+(maxind-1);

elseif (rake -----I)

k_header_end=(144+48)*11+l;

end

nr=length(rcvl);

rcv3=rcvl(k_header_end:length(rcvl));

if ((Rate_modetx==55)&(cckdemodtype==l))

if (rake == 0)

[d_rcv] = cck55demod(rcv3,nBittx,codevec55,bitvalvec55

phchodd55,phchevn55,phvec55,ph0);
elseif (rake = I)

[d_rcv] = CCK55DemodBake_NoFor(rcv3,nBittx,codevec55,bitvalvec55

phchodd55,phchevn55,phvec55,phO,PSDULenEth,hhat);

end

elseif ((Rate_modetx==ll0)&(cckdemodtype==l))

if (rake == 0)

[d_rcv]=ccklldemod(rcv3,nBittx,codevec,bitvalvec,phchodd

phchevn,phvec,phO);

elseif (rake == i)

[d_rcv]=CCKllDemodRake_NoFor(rcv3,nBittx,codevec,bitvalvec

phchodd,phchevn,phvec,phO,PSDULength,hhat);

end

else

if (rake == O)

d_rcv=Demod_llbv2(Rate_modetx,nBittx,phO,CCK_PBCCtx,coherent,rcv3);

153

F CODE LISTINGS

147

148

149

150

151

152

153

154

155

156

157

158

159
160

161

162

163

164

165

166

167
end

elseif (rake == 1)

d_rcv=Demod_llbv4(Rate_modetx,nBittx,phO,CCK_PBCCtx,coherent

rcv3,hhat,PSDULength);

end

end;

dd_rcv=Descrambler_ltb(d_rcv(l:l:nBittx));

Err=-(dd_rcv(l:nBittx)-=PSDU);

ErrorKnt=sum(Err);

bitcounter = bitcounter + nBittx;

wrongcounter = wrongcounter +EITorKnt

bet = wrongcounter/bitcounter

YY

if (wrongcounter >= I0000)

break;

end

toc

PERDist anceRake_NoFor.m

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

clear all; format compact; close all;clc;

Z IEEE 802.11a/b/g Toolbox, v.3.02, March 2004

Z All rights reserved, (c) CommAccess Technologies, 2001-2004.

Z Modified by Anirudh Daga, NMSU

Z

opt_mode=l;Z opt_mode = 1 for 1Mbps, 2 for 2 Mbps, 3 for 5.5 Mbps, 4 for Ii Mbps

rake = O;

CCK_PBCCtx=O;Z 0 for CCK, 1 for PBCC

cckdemodtype=l; _0 for suboptimal CCK demod, I for near-optimal

coherent=O;_ I for coherent demod, 0 for otherwise

p=18;Z p = the number of sample per channel symbol

chiprate=ll; Z Mega cps

deltaT=I/chiprate/p;

nsample=p;

154

F CODE LISTINGS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

7.Pulse shaping sequence

Nspan=B;

ns=p;

alpha=O.35;

hTx=SRRC (alpha,ns,Nspan) ;

hRx=hTx/nsample;

/e/_elef_/e_e_o_J_e_e_el_q_ele_je_e_e_eqe_Je_lele_e_e/e_efe_e_e_e_e_ele_e_l_e_e_e/e_e_el_el_e_e_e_el_le_e

7, ICS TELECOM POWERDELAY PROFILE INCORPORATION 7,

7.7.7.7.7.Z7.7.7.7.Z7.Z7.7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.7.7.7.7.7.7.7.ZZ7.7.7.Z7.7.7.7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.7.7.7.7.

PowerDelayProfile = dlmread ('C:\DocumentsPapers\NASA Documents\...

PDPSimulationData0ct2004\Gusevl_SiteI_lO00m,txt ');

[ImpulseResponse,TruePower] = PDP2IMPDistance (PowerDelayProfile);
TruePower

ImpulseResponse = Missing_Time_Insertion(ImpulseResponse) ;

ImpulseResponse = ImpulseResponse (:,i)';

Z7.7.7.7.7.7.7.7.7.7.7.7.7.7.7._7.7.7.7.7.7.ZZZ_Z7.7.7.Z7.Z7.7.Z7.7.7.Z7._7.7.Z7.7.ZZ7.7.7.Z7.7.7.7.ZZ7.7.7.7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.7.

7, 0VERSAMPLING THE MULTIPATH CHANNEL IMPULSE RESPONSE 7.

7.7.7.7.7.7.7.7.7.7.7.7.7.7.7._7.7.7.Z7.7.7.7._7.7.7.7.7.7.7.7.7.7.7.Z7.7.7.7.7.Z7.7.7.7.7.7.7.7.ZZ7.7.7.7.7.7.Z7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.Z7.

hfl = resample(ImpulseResponse,99,50,1) ;

hfl = (norm(ImpulseResponse)/norm(hfl)).*hfl;

IRLength = length(ImpulseResponse) ;

if(opt_mode>4), opt_mode=4; end

if(opt_mode<l), opt_mode=l; end _ protection

if (opt_mode==l) Rate_modetx=lO; end;

if (opt_mode_2) Rate_modetx=20; end;

if (opt_mode_3) Rate_modetx=55; end;

if (opt_mode--=4)Rate_modetx=110; end;

if (opt_mode==3)

[codevec55,bitvalvec55,phchodd55,phchevn55,phvec55]=cck55demodsupport;

end;

if (opt_mode==4)

[codevec,bitvalvec,phchodd,phchevn,phvec]=ccklldemodsupport;

end;

if(CCK_PBCCtx == i),

phO=pi;

end 7.for (PBCC) BER simulation purpose

nBy_e=50;

155

F CODE LISTINGS

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

packetcounter=O;

wrongcounter=O;

for yy = 1:I000

7,start waveform generation

L_S=I; Z 1 for the long preamble, 0 for the short preamble

nBittr=nByte*8;

PSDU=BitGen (nBittx);

PSDULength ffilength(PSDU) ;

b23= [0 CCK_PBCCtx] ;

[IQsequence,xBit,ph0]=PLCP_llb(opt_mode,L_S,PSDU,b23);

TxdSpreadPreamble = IQsequence(l:128*ll);

nIQ=length(IQsequence);

if(b23(2)=1)

tap_lib=J1 0 1 1 0 1 1 1 1 1 1 1 0 1];

VitrB_ini(tap_llb)
end

ZGenerate Rayleigh fading

rayleigh_fading = (llsqrt(2))*(randn(size(hfl)) + j*randn(size(hfl)));

hf ffihfl.*rayleigh_fading;

CIR = conv(conv(hf,hTx),hRx);

CIR = CIR(lO*ns+l:ns:length(CIR)-lO*ns);
Z

Z generate Tx waveform

S=zeros(1,ns*nIQ);

S(l:ns:ns*nIQ)fIQsequence;
S=conv(S,hTx);

Sl=conv(S,hf);

nxffilength(S1);

Z Add noise to signal samples

sigma = 4.8663e-7;

wi=randn(l,nx)*sigma; wq=randn(l,nx)*sigma;

if (opt_mode == 1) $2 = S1 + wi; else S2=Sl+(wi+j*wq);

Y_Receiver section starts

Sr=conv(S2,hRx);

156

F CODE LISTINGS

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

ExPar_llbl

rcvl = Sr(lO*ns+l :ns: length(Sr)-lO*ns) ;

if (rake _ 1)

RxdSpreadPreamble = rcvl(l:length(TxdSpreadPreamble)+length(rcvl)-nIq) ;

hhat = ChannelEst_NoFor(RxdSpreadPreamble,TxdSpreadPreamble);

[maxval,maxind] = max(hhat) ;

elseif (rake == O)

[maxval, maxind] --max (CIR) ;

end

if (rake _ O)

rcvl = rcvl(l:2112) ;

elseif (rake --_ 1)

rcv2 = rcvl(l:2112 + length(hhat) -1) ;

temp = repmat((1 :length(hhat))', 1,2112) + repmat(O:2112-1,1ength(hhat) ,1) ;

rcv3 = conj (repmat (hhat (:), 1,2112)). *rcv2 (temp) ;
rcvl = sum(rcv3) ;

end

nr=length (rcvl) ;

ExPar_ 1 lb2v2

z= (T_I) ;

b=O;

signal= (z (b+l :b+8) ==I) ;

Rate_mode=sum(signal .* (2 " (7:-1:0)));

service= (z (b+9 :b+16) --=-1);

CCK_PBCCrx=service (4) ;

leng= (z (b+17 :b+32)==1) ;

CRC= (z(b+33: b+48) -----I) ;7.[PPDU (177: 192)]

CRC=ones (1,16)-CRC;

T=[signal service leng CRC];

157

F CODE LISTINGS

155

156

157

158

159

160

161

162

163

164

165

166

end

checksum=CRCck_llb(T)

if(checksum "=0)

wrongcounter =wrongcounter + 1;

end

_rongcounter

packetcounter = packetcounter + 1

per = wrongcounter/packetcounter

if wrongcounter > 1000; break; end;

YY

PDP2IMP.m

1

2

3

4

5

6

7

8

9

10

11

7_unction to convert Martian PDP into channel impulse response

7_y Anirudh Daga, NNSU

function [ImpulseResponse] = PDP2IMP(PowerDelayProfile)

PowerDelayProfile(:,l) = PowerDelayProfile(:,l) - 144.82;

PowerDelayProfile(:,l) = (le-3).*(lO.'(.l*(PowerDelayProfile(:,l))));

PowerDelayProfile(:,2) = PowerDelayProfile(:,2) - PowerDelayProfile(1,2);

PowerDelayProfile = PowerDelayProfile';imp = zeros(size(PowerDelayProfile));

imp(l,:) = sqrt(PowerDelayProfile(1,:));imp(2,:) = PowerDelayProfile(2,:);

ImpulseResponse = imp;

PDP2IMPDistance.m

1

2

3

4

5

6

7

8

9

10

11

12

7_unction to obtain channel impulse response and true power from Martian PDPs at a given

Zdistance

7_yAnirudhDaga, NMSU

function [ImpulseResponse,TruePower] = PDP2IMPDistance(PowerDelayProfile)

PowerDelayProfile(:,l) = PowerDelayProfile(:,l) - 144.82;

PowerDelayProfile(:,l) = (le-3).*(lO.'(.l*(PowerDelayProfile(:,l))));

TruePower = sum(PowerDelayProfile(:,l));

PowerDelayProfile = PowerDelayProfile';

imp = zeros(size(PowerDelayProfile));

imp(l,:) = sqrt(PowerDelayProfile(1,:));

158

F CODE LISTINGS

13 imp(2,:) = PowerDelayProfile(2,:);

14 ImpulseResponse = imp';

Missing_Time_Insertion.m

1 _Miss__u-g time inse_v_ion to _ill in zeros

2 Y,By Anirudh Daga, NMSU

3

4 function [PowerDelayProfile] = Missing_Time_Insertion(pdp)

5

6 pdp(:,2) = rounddec(pdp(:,2),2);

7 b(:,2) = [pdp(1,2):O.Ol:pdp(end,2)]';

8 b(:,2) ffi rounddec(b(:,2),2);

9 [dum,idx] = ismember(pdp(:,2),b(:,2));

10 b(idx,1) = pdp(:,l);

11 PowerDelayProfile = b;

rmsdelayspread.m

Program to calculate RMS Delay Spread from PDP

clear; close all; clc;format lonE;

pdp = dlmread ('C: \DocumentsPapers\NASA Documents\...

5 PDPSimulationDataOct2OO4\AntennaHeight\Gusevl...

6 Site3\Gusevl_Site3_2m_l lb. tx_ ') ;

7 pdp(:,l) = pdp(:,l)-144.82;

8 pdp(:,l) = (le-3).*ClO.'(.l*(pdp(:,l))));

9 pap = pdp.,;

I0 pdp(2,:) = (le-6)*Cpdp(2,:));

11 taubar = sum(pdp(1,:).*pdp(2,:))/sum(pdp(1,:));

12 tausqrbar = sum(pdp(1, :) .*(((pdp(2, :)). "2)))/sum(pdp(1, :)) ;

13 rmsdsp = sqrt (tausqrbar - (taubar'2))

ChannelEst_NoFor.m

1

2

3

4

5

Y, Channel Estimation

Y, By Anirudh Daga, NMSU

function [hhat] = ChannelEst_NoFor(RxdSpreadPreamble,TxdSpreadPreamble)

159

F CODE LISTINGS

6

7

8

9

10

11

12

13

14

15

16

17

18

19
2O

21

22

23

24
25

26

27

n = length(TxdSpreadPreamble),

phi = zeros(1,n) ;

for j= 0:n-1

ind = I : n-j;

phi(j+1) = sum(TxdSpreadPreamble (ind)
end

.* TxdSpreadPreamble(ind + j));

autocorr = toeplitz(phi);

IRLengthChipRate = length(RxdSpreadPreamble)-length(TxdSpreadPreamble)+1;

temp = repmat((l:IRLengthChipRate)',1,1ength(TxdSpreadPreamble))...

+ repmat(0:length(TxdSpreadPreamble)-l,IRLengthChipRate,1);

path = RxdSpreadPreamble(temp);

corr= (path*TxdSpreadPreamble. _) .'-,

Rbb = autocorr(l:IRLengthChipRate,1:IRLengthChipRate);
hhat = (inv(Rbb)*corr')';

ccklldemodsupport.m

1 Y.By Dr. Deva K. Borah, NMSU

2 7_Ulease do not distribute without the permission of the author

3 function [codevec,bitvalvec,phchodd,phchevn,phvec]=ccklldemodsupport(void);

4 totalbitvecs=2"8;

5 veccntr=zeros(1,8);

6 veccntr(1)=-l;

7 for hypono=l:totalbitvecs

8 veccntr(1)=veccntr(1)+l;

9 if (veccntr(1)>=2)

10 veccntr(1)=0; flowing=l;

11 for jj=2:8

12 if (flowing1)

13 veccntr(jj)--veccntr(jj)+l;

14 if (veccntr(jj)>=2) veccntr(jj)=O; flowin8=l ; else flowing=O; end;

15 end; _if flowing==l

16 end; 7_or jj

17 end; _if veccntr(1)>=2

18 bitvalvec(hypono,:)=veccntr;

160

F CODE LISTINGS

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

7.Generate QPSK symbols
for ii=1:4

bitval=2*bitvalvec (hypono, 2. (ii-1) +1) +bitvalvec (hypono, 2.ii) ;
switch bitval

case O, phvec(hypono,ii)=O;

case 1, phvec(hypono,ii)=pi/2;

case 2, phvec(hypono, ii)=pi;

case 3, phvec(hypono,ii)=3*pi/2;
end; 7,swit ch

end; 7.for ii

codevec (hypono, 1: 8) = [exp (j* (phvec (hypono, 1) +phvec (hypono, 2) +phvec (hypono, 3) +...

phvec (hypono, 4))), exp (j * (phvec (hypono, 1) +phvec (hypono, 3) +...

phvec (hypono, 4))), exp (j * (phvec (hypono, 1) +phvec (hypono, 2) +...

phvec (hypono, 4))), -l*exp (j * (phvec (hypono, 1) +phvec (hypono, 4)))

exp (j * (phvec (hypono, 1) +phve c (hypono, 2) +phve c (hypono, 3)))

exp (j * (phvec (hypono, 1) +phvec (hypono, 3))), -l*exp (j * (phvec (hypono , 1) +...

phvec (hypono, 2))), exp (j *phvec (hypono, 1))] ;
end; 7,for bitno

7J)efine even and odd phase changes
phchevn (1) =0;

phchevn (2) =pi/2;

phchevn (3)=3.pi/2;

phchevn (4) =pi;

phchodd=phchevn+pi;

ccklldemod.m

1

2

3

4

5
6

7

8

9

10

11
12

13

CCK - II Mbps near optimal demodulation

7_yDr. Deva K. Borah, NMSU

7_lease do not distribute without the permission of the author

function [d_rcv]=ccklldemod(rcv3,nBittx,codevec,bitvalvec,phchodd,phchevn,phvec,phO);

lblocks=nBittx/8;

prevfirstph=O;
rcv3 = rcv3(l:nBittx);

rcv3=rcv3.*exp(-j*phO);
codevec = round(codevec);

161

F CODE LISTINGS

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

for ii=l :Iblocks

testvec=rcv3 ((ii-l)*8+l :ii*8) ;

testmat=repmat (testvec, 256, I) ;

testmatstatus=conj (testmat). *codevec;

[maxval, maxind] =max(sum(real (testmatstatus). '));

detbits ((ii-1).8+3: ii*8) =hitvalvec (maxind, 3: 8) ;

firstphtx=phvec (maxind, I) ;

phchange=f irs_phtx-prevf irstph;

if (mod(ii,2)_O)

[minval, minind] ----mill(abs (exp (j*phchodd) -exp (j*phchange))."2) ;

else

[minval, minind] --min(abs (exp (j*phchevn) -exp (j*phchange))."2) ;

end; Y,if

secbit--mod(minind-l,2);

firstbit=floor((minind-l)/2);

detbits((ii-l)*8+l:(ii-l)*8+2)=[firstbit,secbit];

prevfirstph--firstphtx;

end; 7dor ii

d_rcv=detbits;

cck55demodsupport.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

75y Dr. Deva K. Borah, NMSU

7J4odified by Anirudh Daga, NMSU

721ease do not distribute without the permission of the author

function [codevec,bitvalvec,phchodd,phchevn,phvec]=cck55demodsupport(void);

totalbitvecs=2"4;

bitvalvec = de2bi([O:totalbitvecs-l]);

for hypono=l:totalbitvecs

ZGenerate QPSK symbols

bitval=2*bitvalvec(hypono,l)+bitvalvec(hypono,2);

switch bitval

case O, phvec(hypono,1)=O;

case I, phvec(hypono,l)=pi/2;

case 2, phvec(hypono,l)=3*pi/2;

case 3, phvec(hypono,l)=pi;

end; _switch

phvec(hypono,2) = pi*bitvalvec(hypono,3) + pi/2;

phvec(hypono,3) = O;

162

F CODE LISTINGS

20

21

22
23

24

25
26

27

28

29

30

31

32

33

34

35

36

phvec (hypono, 4) = pi*bitvalvec (hypono, 4) ;

codevec (hypono, 1 :8) = [exp (j* (phve c (hypono, 1) +phve c (hypono, 2) +phvec (hypono, 3) +...

phvec (hypono, 4))), exp (j * (phvec (hypono, 1) +phvec (hypono, 3) +...

phvec (hypono, 4))), exp (j* (phvec (hypono, 1) +phvec (hypono, 2) +...

phvec (hypono, 4))), - l*exp (j* (phvec (hypono, 1) +phvec (hypono, 4)))

exp (j* (phvec (hypono, 1) +phvec (hypono, 2) +phvec (hypono, 3)))

exp (j* (phve c (hypono, 1) +phvec (hypono, 3))), - l*exp (j* (phvec (hypono, 1) +...
phve c (hypono, 2))), exp (j *phve c (h)_ono, 1))] ;

end; _.for bitno

7,Define even and odd phase changes

phchevn (1)=0;

phchevn (2) =pi/2;

phchevn (3) =3*pi/2;

phchevn (4) =pi;

phchodd_phchevn+pi;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

cck55demod.m

7.CCK- 5.5 Mbps near optimal demodulation

75y Dr. Deva K. Borah, NMSU

7J_odifiedby Anirudh Daga, NMSU

Y_lease do not distribute without the permission of the author

function [d_rcv]=cck55demod (rcv3,nBittx,codevec,bitvalvec,phchodd, phchevn,phvec,phO);

lblocks=nBittx/4;

prevfirstph=O;

rcv3 = rcv3(1:2*nBittx) ;

rcv3=rcv3. *exp (-j*phO) ;
for ii=l :lblocks

testvec=rcv3 ((ii-I).8+1:ii*8);

testmat=repmat (testvec,16,I);

testmatstatus=conj (testmat).*codevec;

[maxval,maxind] =max(sum (real(testmatstatus)._));

detbits ((ii-l)*4+3:ii*4)=bitvalvec(maxind,3:4);

firstphtx=phvec (maxind,i);

phchange=f irstphtx-prevfirstph;

if (mod(ii,2)==0)

163

F CODE LISTINGS

24

25

26

27

28

29

30

31

32

33

34

35

[minval,minind]--min(abs(exp(j*phchodd)-exp(j*phchange)).'2);
else

[minval,minind]--min(abs(exp(j*phchevn)-exp(j*phchange)).'2);

end; _if

secbit=mod(miniud-l,2);

firstbit=floor((minind-l)/2);

prevfirstph--firstphtx;

end; Zfor ii

d_rcv=detbits;

1

2

3

4

CCK11DemodRake_NoFor.m

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

_CCK - 11Mbps near optimal demodulation (with RAKE)

75y Dr. Deva K. Borah, NMSU

7J4odifiedby Anirudh DaEa,NMSU

7_Ulease do not distribute without the permission of the author

function [d_rcv]=CCKllDemodRake_NoFor(rcv3,nBittx,codevec,bitvalvec

phchodd,phchevn,phvec,phO,PSDULength,hhat);

lblocks=nBittx/8;

prevfirstph=O;

rcv = rcv3(l:PSDULength+length(hhat)-l);

temp = repmat((l:length(hhat))',l,PSDULength) + repmat(O:PSDULength-l,length(hhat),l);

rcv2 = conj(repmat(hhat(:),l,PSDULength)).*rcv(temp);

rcv3 = sum(rcv2);

rcv3 = rcv3.*exp(-j*phO);

codevec = round(codevec);

for ii=l:Iblocks

testvec=rcv3((ii-1)*8+l:ii*8);

testmat=repmat(testvec,256,1);

testmatstatus=conj(testmat).*codevec;

[maxval,maxind]--max(sum(real(testmatstatus).'));

detbits((ii-l)*8+3:ii*8)=bitvalvec(maxind,3:8);

firstphtx=phvec(maxind,l);

phchange=firstphtx-prevfirstph;

164

i

)i _

F CODE LISTINGS

29

30

31

32

33

34

35

36

37

38

39

40

41

if (mod(ii,2)_O)

[minval,minind]=min(abs(exp(j*phchodd)-exp(j,phchange)).-2);
else

[minval,minind]=miu(abs(exp(j*phchevn)-exp(j*phchange))._2);
end; _if

secbit--mod(minind-l,2);

firstbit=floor((minind-1)/2);

detbits((ii-l)*8+l:(ii-l)*8+2)=[firstbit,secbit];

prevfirstph=firstphtx;

end; 7_or ii

d_rcv=detbits;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26
27

CCK55DemodeRake_NoFor.m

_CCK - 5.5 Mbps near optimal demodulation (with RAKE)

7$yDr. Deva K. Borah, NMSU

724odified by AnirudhDaga, NMSU

_lease do not distribute without the permission of the author

function [d_rcv]=CCK55DemodRake_NoFor(rcv3,nBittx,codevec,bitvalvec

phchodd,phchevn,phvec,phO,PSDULength,hhat);

lblocks=nBittx/4;

prevfirstph=O;

rcv = rcv3(l:PSDULength*2+length(hhat)-l);

temp = repmat ((I:length(hhat))',1,PSDULength*2)...

+ repmat (0:PSDULength*2 - 1,length(hhat),I);

rcv2 = conj (repmat (hhat (:), 1, PSDULength*2)). *rcv (temp) ;
rcv3 = sum(rcv2) ;

rcv3 = rcv3.*exp(-j*phO) ;

for ii=l:lblocks

testvec=rcv3((ii-1)*8+l:ii*8);

testmat=repmat(testvec,16,1);

testmatstatus=conj(testmat).*codevec;

[maxval,maxind]--max(sum(real(testmatstatus)._));

detbits((ii-1)*4+3:ii*4)=bitvalvec(maxind,3:4);

165

F CODE LISTINGS

28

29

30

31

32

33

34

35

36

37
38

39

4O

41

42

firstphtx=phvec (maxind, 1) ;

phchange=f irstphtx-prevf irstph;

if (mod(ii, 2)==0)

[minval, minind] =min (abs (exp (j *phchodd) -exp (j *phchange)). "2) ;
else

[minval, minind] --rain (abs (exp (j *phchevn) -exp (j *phchange)). "2) ;
end; 7,if

secbit=mod(minind-l,2);

firstbit=floor((minind-1)/2);

detbits((ii-1)*4+l:(ii-1)*4+2)=[firstbit,secbit];

prevfirstph=firstphtx;

end; 7_or ii

d_rcv=detbits;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

rounddec.m

function y = rounddec(x, n)

7_ROUNDDEC Round to a specified number of decimals.

X

Z

Z

Z

Z

Z

Z

Y = ROUNDDEC(X, N) rounds the elements of X to N decimals.

For instance, rounddec(lO*sqrt(2) + i*pi/lO, 4) returns

14.1421 + 0.3142i

See also: ROUND, FIX, FLOOR, CEIL, ROUNDDIG, TRUNCDEC, TRUNCDIG.

7, Author:

Time-stamp:
Z E-mail:

Z URL:

Peter J. Acklam

2004-09-22 20:06:46 +0200

pjacklam_online.no

http://home.online.no/-pjacklam

Y,Check number of input arguments.

error(nargchk(2, 2, nargin));

Z Quick exit if either argument is empty.

if isempty(x) il isempty(n)

y= [];
return

end

Z Get size of input arguments.

166

F CODE LISTINGS

26

27

28

29

30

31

32

33

34

35
36

37

38

size_x = size(x);

size_n = size(n);

scalar_x = all(size_x == i);

scalar_n = all(size_n == I);

7,True if x is a scalar.

7,True if n is a scalar.

7,Check size of input arguments.

if -scalar_x _ -scalar_n _ -isequal(size_x, size_n)

e_ror_t _=e_ boCh ar_.ments are non-scalars they must have'

' the same size']);

end

f = lO.-n;

y = round(x .* f) ./ f;

167

List of Symbols, Abbreviations, and Acronyms

E[,]
h
P(n)

- Expectation operator

- Antenna height

- received power at index n

_8

ar

- microseconds (I0 -_ seconds)

- rms delay

- Time delay

- Mean time delay

AP

BPSK

BER

BVS

CCK

CRC

dBi

dBm

DBPSK

DEM

DQPSK

DSSS

EIRP

GHz

GI

GPS

IEEE

IP

ITM

LAN

m

MAC

MGS

mW

ins

- Access Point

- Binary Phase Shift Keying
- Bit Error Rate

- Berkeley Varitronics Systems

- Complementary Code Keying

- Cyclic Redundancy Code

- deciBels referenced to an isotropic (unity gain) antenna
- deciBels referenced to 1 milliwatt

- Differential Binary Phase Shift Keying

- Digital Elevation Model

- Differential Quadrature Phase Shift Keying

- Direct Sequence Spread Spectrum

- Effective Isotropic Radiated Power

- GigaItertz (109 Hz)
- Guard Interval

- Global Positioning System

- Institute of Electrical and Electronic Engineers
- Internet Protocol

- Irregular Terrain Model
- Local Area Network

- meter

- Media Access Control

- Mars Global Surveyer

- milliWatts (10 -3 Watts)

- milliseconds (10 -3 seconds)

168

P
r

NMSU

ns

OFDM

PBCC

PHY

PDA

PER

PDP

PLCP

PPDU

PSDU

QAM

QoS
QPSK
RF

RSSI

RTT

RX

SFD

TCP

TX

UDP

W

WEP

WLAN

- New Mexico State University

- nanoseconds (10 -9 seconds)

- Orthogonal Frequency Division Multiplexing

- Packet Binary Convolutional Code

- Physical Layer

- Personal Digital Assistant

- Packet Error Rate

- Power Delay Profile

- Physical Layer Convergence Procedure

- Physical layer Protocol Data Unit

- Physical Sublayer service Data Unit

- Quadrature Amplitude Modulation

- Quality of Service

- Quadrature Phase Shift Keying

- Radio Frequency

- Received Signal Strength Indicator

- Round Trip Time
- Receiver

- Start Frame Delimiter

- Transmission Control Protocol

- Transmitter

- User Datagram Protocol
- Watt

- Wired Equivalent Privacy
- Wireless Local Area Network

169

